Skip to main content
Log in

Experimental basis of shockwave-induced renal trauma in the model of the canine kidney

  • Published:
World Journal of Urology Aims and scope Submit manuscript

Summary

Using the new electromagnetic shockwave source of the Modulith SL 20 shockwave-induced renal trauma was evaluated by acute and chronic studies in the the canine kidney model. In a further study the electromagnetic shockwave source of the Lithostar Plus Overhead module was tested. Overall, 92 kidneys were exposed to shock waves coupled either by water bath (Modulith lab type) or by water cushion (Modulith prototype, Lithostar Overhead) under ultrasound localization. The generator voltage ranged between 11 and 21 kV, the number of impulses between 25 and 2500. After application of 1500/2500 shocks the extent of the renal lesion depended strictly on the applied generator voltage and was classified into 4 grades: Grade 0, no macroscopic trauma detectable (at 11–12 kV); grade 1, petechial medullary bleeding (at 13 kV); grade 2, cortical hematoma (at 14–16 kV); and grade 3, perirenal hematoma (17–20 kV). Whereas at low and medium energy levels the number of shocks played only a minor role, at maximal generator voltage (20 kV) even 25 impulses induced a grade 2 and 600 shocks a grade 3 lesion, emphasizing the importance of shockwave limitation in the upper energy range. In shockwave-induced renal trauma a vascular lesion was predominant and cellular necrosis was secondary. Coupling with a water cushion resulted in a 15%–20% decrease in the disintegrative and traumatic effect, which was compensated for by increasing the generator voltage by 2 kV. Long-term studies showed complete restitution following grade 1 and 2 trauma, whereas after a grade 3 lesion a small segmental and capsular fibrosis without hyperplasia of the juxtaglomerular apparatus was observed. Based on the characteristic ultrasound pattern found in the first study, the threshold for induction of grade 1 lesion was investigated. With both lithotripters a wide range for induction of a grade 1 lesion (Modulith 234–411, Lithostar Plus 220–740) and also a significant overlapping with grade 0 and 2 lesions was seen at low energy settings (levels 2–4). In contrast, the range of shocks (Modulith 96–150, Lithostar Plus 90–142) and overlapping was minimal when high energy was used (levels 7–9). Finally, the disintegration-trauma coefficient combining the results obtained in a standard stone model with those of the canine kidney model was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahams C, Lipson S, Ross L (1988) Pathologic changes in the kidney and other organs of dogs undergoing extracorporeal shock wave lithotripsy with a tubless lithotriptor. J Urol 140:391–394

    Google Scholar 

  2. Baba S, Hata M, Nakanoma T, Tazaki H (1990) Long-term bioeffects of extracorporeal shock waves on rat kidneys. Akt Urol 21:93–96

    Google Scholar 

  3. Baumgartner BR, Dikey KW, Ambrose SS, Walton KN, Nelson RC, Bernardino ME (1987) Kidney changes after extracorporeal shock wave lithotripsy: appearance on MR imaging. Radiology 163:531–534

    Google Scholar 

  4. Brewer SL, Atala AA, Ackerman DM, Steinbock GS (1988) Shock wave lithotripsy damage in human cadaver kidneys. J Endourol 2:333–339

    Google Scholar 

  5. Charig C, Webb DR, Payne SR, Wickham JC (1986) Comparison of treatment of renal calculi by open surgery, percutaneous nephrolithotomy, and extracorporeal shock wave lithotripsy. Br Med J 292:879

    Google Scholar 

  6. Chaussy C (ed) (1982) Extracorporeal shock wave lithotripsy: new aspects in the treatment of kidney stone disease. Karger, Basle, pp 57–73

    Google Scholar 

  7. Chaussy C, Brendel W, Schmiedt E (1980) Extracorporeally induced destruction of kidney stones by shock waves. Lancet I:1265–1268

    Google Scholar 

  8. Chaussy C, Schmiedt E, Jocham D, Brendel W, Forssmann B, Walther V (1982) First clinical experience with extracorporeally induced destruction of kidneystones by shock waves. J Urol 127:417–420

    Google Scholar 

  9. Coleman AJ, Saunders JE (1989) A survey of the acoustic output of commercial extracorporeal shock wave lithotriptors. Ultrasound Med Biol 15:213–227

    Google Scholar 

  10. Das G, Birch B, Samuel C, Whitfield NH, Wickham JEA (1988) Enzymaturia as a marker of tubular recovery following extracorporeal shock wave lithotripsy. In: Lingeman JE, Newman DE (eds) Shock wave lithotripsy — state of the art. Plenum Press, New York, pp 369–370

    Google Scholar 

  11. David RD, Wolfson B, Barbaric Z, Fuchs GJ (1991) In-vivo model to investugate the risk of hypertension following high energy shock wave application to the kidney. J Urol 145:256A

    Google Scholar 

  12. Delius M, Enders G, Heine G (1987) Biological effects of shock waves: lung hemorrhage by shock waves in dogs — pressure dependence. Ultrasound Med Biol 13:61–67

    Google Scholar 

  13. Delius M, Enders G, Xuan Z (1988) Biological effects of shock waves: kidney damage by shock waves in dogs — dose dependence. Ultrasound Med Biol 14:117–122

    Google Scholar 

  14. Delius M, Jordan M, Eizenhoefer H, Marlinghaus E, Heine G, Liebich HG, Brendel W (1988) Biological effects of shock waves: kidney haemorrhage by shock waves in dogs — administration rate dependence. Ultrasound Med Biol 14:689–694

    Google Scholar 

  15. Eisenberger F, Chaussy C, Wanner K (1977) Extracorporale Anwendung von hochenergetischen Stoßwellen — Ein neuer Aspekt in der Behandlung des Harnsteinleidens. Akt Urol 8:3–15

    Google Scholar 

  16. Eisenberger F, Miller K, Rassweiler J (eds) (1991) Stone therapy in urology. Thieme, Stuttgart New York

    Google Scholar 

  17. El-Damanhoury H, Schaub T, Stadtbäumer M, Kunisch M, Störkel S, Schild H, Thelen M, Hohenfellner R (1991) Parameters influencing renal damage in extracorporeal shock wave lithotripsy: an experimental study in pigs. J Endourol 5:37–40

    Google Scholar 

  18. Evan AP, Willis LR, Connors BA, McAteer JA, Lingeman JE (1991) Renal injury by extracorporeal shock wave lithotripsy. J Endourol 5:25–35

    Google Scholar 

  19. Folberth W, Granz B, Köhler G (1991) What makes a stone break up? New understandings and technical implications. (Abst A-4) J Endourol 5:S-1

  20. Fuchs AM, Fuchs GJ (1989) The effect of extracorporeally induced high energy shock waves on the rabbit kidney and ureter. J Urol 141:277A

    Google Scholar 

  21. Germinale F, Puppo P, Bottino P, Caviglia C, Ricciotti G (1989) ESWL and hypertension: no evidence for causal relationship. J Uro 141:241A

    Google Scholar 

  22. Grote R, Döhring W, Aeikens B (1986) Computertomographischer und sonographischer Nachweis von renalen und perirenalen Veränderungen nach einer extracorporalen Stoßwellenlithotripsie. Fortschr Röntgenstr 144:434–439

    Google Scholar 

  23. Ioritani N, Kuwahara M, Kambe K, Taguchi K, Shirai S, Orikasa S (1989) Arteriovenous fistula and subcapsular hematoma after extracorporeal shock wave applciation: animal experiments. J Urol 141:227A

    Google Scholar 

  24. Jaeger P, Redha F, Uhlschid G, Hauri D (1988) Morphological changes in canine kidneys following extracorporeal shock wave treatment. Urol Res 16:161–166

    Google Scholar 

  25. Jung P, Neisius D, Gebhardt T, Braedel HU, Seitz G, Rumpel H, Ziegler M (1990) Nierenveränderungen nach Applikation extra-corporaler Stoßwellen mit dem neuen Piezolith 2500 beim Hund. Vorgestellt beim 10. Symposium für Experimentelle Urologie, München 1990

  26. Karlsen SJ, Smevik B, Klingenberg-Lund K, Berg KJ (1991) Do extracorporeal shock waves affect urinary excretion of glucosaminoglycans? Br J Urol 67:24–28

    Google Scholar 

  27. Kaude JV, Williams CM, Millner MR, Scott KN, Finlayson B (1985) Renal morphology and function immediately after extracorporeal shock wave lithotripsy. Am J Radiol 145:305–313

    Google Scholar 

  28. Kitada S, Kuramoto H, Kumazawa J, Yamaguchi A, Nakasu H, Hara S (1989) Effects of extracorporeal shock wave lithotripsy on urinary excretion of N-acetyl-beta-d-glucosamidase. Urol Int 44:35–37

    Google Scholar 

  29. Knapp PM, Kulb TB, Lingeman JE, Newman DM, Metrz JH, Mosbaugh PG, Steele RE (1988) Extracorporeal shock wave lithotripsy-induced perirenal hematomas. J Urol 139:700–703

    Google Scholar 

  30. Köhrmann KU, Rassweiler J, Weber A, Kahmann F, Berle B, Wess O, Alken P (1991) Threshold energy of shock waves initiating different grades of lesions in the canine kidney. (Abst A-17) J Endourol 5:S47

  31. Kopper B, Riedlinger R, Stoll HP, Göbbels R, Gebhardt T, Ziegler M (1987) Piezoelektrische Lithotripsie — experimentelle Untersuchungen. In: Ziegler M (Hrsg) Die extrakorporale und laserinduzierte Stoßwellenlithotripsie bei Harn und Gallensteinen. Springer, Berlin Heidelberg New York, S 46–49

    Google Scholar 

  32. Liedl B, Jocham D, Lunz C, Schuster C, Chaussy Ch (1989) Prävalenz und Inzidenz der arteriellen Hypertonie bei ESWL-behandelten Nierensteinpatienten. Urologe [A] 28:130–133

    Google Scholar 

  33. Lingeman JE, Kulb TB (1987) Hypertension following ESWL. J Urol 137:142A

    Google Scholar 

  34. Littleton RH, Melser M, Kupin W (1989) Acute renal failure following bilateral extracorporeal shock wave lithotripsy without ureteral obstruction. In: Lingeman JE, Newman DM (eds) Shock wave lithotripsy vol II: Urinary and biliary lithotripsy. Plenum Press, New York, pp 197–201

    Google Scholar 

  35. Muschter R, Schmeller NT, Reimers I, Kutscher KR, Knipper A, Hofstetter AG, Löhrs U (1987) ESWL-induced renal damage an experimental study. Invest Urol 2:194–197

    Google Scholar 

  36. Neisius D, Seitz G, Gebhardt T, Ziegler M (1989) Dose-dependent influence on canine renal morphology after application of extracorporeal shock waves with Wolf Piezolith. J Endourol 3:337–345

    Google Scholar 

  37. Newman RC, Feldman J, Hachett R, Sosnowski J, Senior D, Finlayson B, Brock K (1987) Pathologic effects of ESWL on canine renal tissue. Urology 29:194–200

    Google Scholar 

  38. Rassweiler J, Alken P (1990) State of the art: limitations and future trends of shock-wave lithotripsy. Urol Res 18 [Suppl]:13–23

    Google Scholar 

  39. Rassweiler J, Eisenberger F, Buck J (1983) Das stumpfe Nierentrauma — operative oder konservative Therapie? Ein Beitrag zur Klassifikation Unfallchirurgie. 9:274–279

    Google Scholar 

  40. Rassweiler J, Köhrmann U, Heine G, Back W, Wess O, Alken P (1990) Modulith SL 10/20 — Experimental introduction and first clinical experience with a new interdisciplinary lithotriptor. Eur Urol 18:237–241

    Google Scholar 

  41. Rassweiler J, Köhrmann KU, Marlinghaus EH, Heine G, Alken P (1991) Threshold of shock wave energy for different degress of renal trauma in the canine kidney model. J Urol 145:255A

    Google Scholar 

  42. Recker F, Ruebben H, Bex A, Constantinides C (1989) Morphological changes following ESWL in the rat kidney. Urol Res 17:229–233

    Google Scholar 

  43. Rigatti P, Colombo R, Centemero A, Francesca F, Girolamo V di, Montorsi F, Trabucchi E (1989) Histological and ultrastructural evaluation of extracorporeal shock wave lithotripsy-induced acute renal lesions: preliminary report. Eur Urol 16:207–211

    Google Scholar 

  44. Rubin JI, Arger PH, Pollack HM, Banner MP, Coleman BG, Mintz MC, Arsdalen KN van (1987) Kidney changes after extracorporeal shock wave lithotripsy: CT evaluation. Radiology 162:21–24

    Google Scholar 

  45. Ryan PC, Jones BJ, Kay EW, Nowlan P, Kiely EA, Gaffney EF, Butler MR (1991) Acute and chronic bioeffects of single and multiple doses of piezoelectric shock waves (EDAP LT.01). J Urol 145:399–404

    Google Scholar 

  46. Schmidt A, Müller M, Wilke J, Eisenberger F (1990) Intrakorporale Druckmessungen in Nierenbecken und Harnleiter während der extrakorporalen Stoßwellenlithotripsie. Präsentiert anläßlich der 42. Jahrestagung der Deutsche Gesellschaft für Urologie, Hamburg 1990

  47. Seitz G, Pletzer K, Neisius D, Dippel W, Gehbardt T (1991) Pathologic-anatomic alterations in human kidneys after extracorporeal piezoelectric shock wave lithotripsy. J Endourol 5:17–20

    Google Scholar 

  48. Servadio C, Livne P, Winkler H (1988) Extracorporeal shock wave lithotripsy using a new, compact and portable unit. J Urol 139:685–688

    Google Scholar 

  49. Thibault P, Dory J, Cotard JP, Moraillon JY, Vallancien G, André-Bougaran J (1986) Lithotripsie à impulsions ultra-courtes. Ann Urol 20:20–25

    Google Scholar 

  50. Trinchieri A, Zanetti G, Tombolini P, Mandressi A, Ruoppolo M, Tura M, Montanari E, Pisani E (1990) Urinary NAG excretion after anesthesia-free extracorporeal lithotripsy of renal stones: a marker of early tubular damage. Urol Res 18:259–262

    Google Scholar 

  51. Vergunst H, Terpstra OT, Schröder F, Matura E (1989) Assessment of shock wave pressure profiles in vitro: clinical implications. J Lithotripsy Stone Disease 1:289–298

    Google Scholar 

  52. Wilbert D, Lang L, Riedmiller H, Alken P, Hohenfellner R (1986) Tierexperimentelle Untersuchungen zur Anwendung einer neuen Stoßwellen-Quelle zur extracorporalen Stoßwellenlithotripsie. Vorgestellt beim 8. Symposium für Experimentelle Urologie, Mainz, 1986

  53. Zwergel T, Neisius D, Zwergel U, Becht E (1989) Hypertension in patients with extracorporeal lithotripsy of urinary stones — incidence in first- and second-generation lithotriptor treatment. J Urol 141:242A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rassweiler, J., Köhrmann, K.U., Back, W. et al. Experimental basis of shockwave-induced renal trauma in the model of the canine kidney. World J Urol 11, 43–53 (1993). https://doi.org/10.1007/BF00182171

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182171

Keywords

Navigation