Skip to main content
Log in

Blood protein conjugates and acetylation of aromatic amines

New findings on biological monitoring

  • Review Articles
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Summary

Internal stress of aromatic amines has so far been evaluated by their determination in blood or urine and by the degree of methemoglobin formation. Animal experiments have shown that these materials can form adducts and conjugates with proteins and nucleic acids. Our investigations show that these processes can also occur in human metabolism. For this the degree of such a formation of protein conjugates depends on an individually different potential for acetylation. In a positive sense it influences the magnitude and the rate of renal excretion of aminoaromates and their conjugates and metabolites formed by this metabolism. In contrast, only free non-acetylated aminoaromates can lead to the formation of conjugates with hemoglobin. These aminoaromates or their metabolites can then be detected quantitatively in intact erythrocytes during their lifespan. The degree of this protein conjugate formation correlates inversely with the magnitude of the acetylation potential depending on the availability of free non-acetylated aminoaromates. According to these results a clearer assessment of past stress or the presence of strain can be obtained with Biological Monitoring by a single determination of such hemoglobin adducts rather than by the traditional quantitative determination of aminoaromates or their metabolites in blood and/or urine or the methemoglobin concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alarcon-Segovia D, Fishbein E, Alcala H (1971) Isoniazid acetylation rate and development of antinuclear antibodies upon isoniazid treatment. Arthritis Rheum 14:748–752

    Google Scholar 

  2. Ariëns EJ, Mutschler E, Simoniss AM (1978) Allgemeine Toxikologie. Thieme, Stuttgart, pp 32–120

    Google Scholar 

  3. Atlas SA, Nebert DW (1976) Pharmacogenetics and human disease. In: Parke DV, Smith RL (eds) Drug metabolism from microbe to man. Taylor and Francis, London, pp 393–430

    Google Scholar 

  4. Baur J, Neumann HG (1980) Correlation of nucleic acid binding by metabolites of trans-4-aminostilbene derivatives with tissue specific acute toxicity and carcinogenicity in rats. Carcinogenesis 1:877–886

    Google Scholar 

  5. Beckett AH, Bélanger PM (1976) Metabolic N-oxidation of secondary and primary aromatic amines as a route to ring hydroxylation, to various N-oxygenated products, and to dealkylation of secondary amines. Biochem Pharmacol 25: 211–214

    Google Scholar 

  6. Barry EJ, Gutmann HR (1970) Further evidence for two types of adducts of N-hydroxy-2-fluorenyl-acetamide with rat liver proteins. Chem Biol Interact 2: 158–159

    Google Scholar 

  7. Caldwell J (1982) Conjugation reactions of nitrogen centers (acetylation reactions). In: Jakoby WB, Bend JB, Caldwell J (eds) Metabolic basis of detoxication. Academic Press, New York, pp 151–170, 291–306

    Google Scholar 

  8. Cartwright GE (1977) Methemoglobinemia and sulfhemoglobinemia. In: Thorn GW, Adams RD, Braunwald E, Isselbacher KJ, Petersdorf RG (eds) Harrison's principles of internal medicine, 8th edn. McGraw-Hill, New York, pp 1710–1713

    Google Scholar 

  9. Damani LA (1982) Oxidation at nitrogen centers. In: Jakoby WB, Bend JB, Caldwell J (eds) Metabolic basis of detoxication. Academic Press, New York, pp 137 (127–149)

    Google Scholar 

  10. Devadatta S, Gangadharam PRJ, Andrews RH, Fox W, Ramakrishnan CV, Selkon JB, V'elu S (1960) Peripheral neuritis due to isoniazid. Bull WHO 23:587–598

    Google Scholar 

  11. Doelle B, Toepner W, Neumann HG (1980) Reaction of arylnitroso compounds with mercaptanes. Xenobiotica 10:527–536

    Google Scholar 

  12. Ebaugh FG, Emerson CP, Ross JF (1953) The use of radioactive 51-chromium as an erythrocyte tagging agent for the determination of red cell survival in vivo. J Clin Invest 32:1260

    Google Scholar 

  13. Ehrenberg L, Osterman-Golkar S, Segerbaeck D, Haellstroem T (1976) Evaluation of genetic risks of alkylating agents. II. Hemoglobin as a dose monitor. Mutat Res 34:1–10

    Google Scholar 

  14. Evans DAP, Manley KA, McKusick VA (1960) Genetic control of isoniazid metabolism in man. Br Med J 2:485–491

    Google Scholar 

  15. Evans EE, Dinman BD, Leech AL (1958) AMA Arch Ind Health 18:422 (cited in Patty's Industrial Hygiene and Toxicology, 2nd edn)

    Google Scholar 

  16. Eyer P (1983) The red cell as a sensitive target for activated toxic arylamines. Arch Toxicol [Suppl] 6:3–12

    Google Scholar 

  17. Eyer P, Lierheimer E (1980) Biotransformation of nitrosobenzene in the red cell and the role of glutathione. Xenobiotica 10:517–526

    Google Scholar 

  18. Forth W (1983) Sind Sie ein Langsam-Azetylierer? Münch Med Wochenschr 125:18–19

    Google Scholar 

  19. Gaugler BJM, Neumann HG (1979) The binding of metabolites formed from aminostilbene derivates to nucleic acids in the liver of rats. Chem Biol Interact 24:355–372

    Google Scholar 

  20. Glowinski IB, Radtke HE, Weber WW (1978) Genetic variations in N-acetylation of carcinogenic arylamines by human and rabbit liver. Mol Pharmacol 14:940–949

    Google Scholar 

  21. Jenkins FP, Robinson JA, Gellatly JBM, Salmond GWA (1972) The no-effect dose of aniline in human subjects and a comparison of aniline toxicity in man and the rat. Food Cosmet Toxicol 1: 671–679

    Google Scholar 

  22. Kao J, Faulhaber J, Bridge JL (1978) The metabolism of aniline in rats, pigs and sheeps. Drug Metab Disp 6:549

    Google Scholar 

  23. Kiese M (1966) The biochemical production of ferrihemoglobin-forming derivatives from aromatic amines, and mechanisms of ferrihemoglobin-formation. Pharmacol Rev 18: 1091

    Google Scholar 

  24. Kiese M, Taeger K (1976) The fate of phenylhydroxylamine in human red cells. NaunynSchmiedeberg's Arch Pharmacol 292:59–66

    Google Scholar 

  25. Lehnert G (1980) Biologische Arbeitsstoff-Toleranz-Werte: ein Konzept zur Individualprävention bei Exposition gegenüber gesundheitsschädlichen Arbeitsstoffen. Arbeitsmed Sozialmed Präventivmed 15:266–270

    Google Scholar 

  26. Lewalter J, Biedermann P, Schucht Th (1985) In: Analysen in biologischem Material. Deutsche Forschungsgemeinschaft, Verlag Chemie, Weinheim

    Google Scholar 

  27. Lewalter J, Korallus U (1985) Evaluation of chromium in separated erythrocytes as a new aspect for biological monitoring of exposition to hexavalent chromium. Int Arch Occup Environ Health 55:305–318

    Google Scholar 

  28. Lower GM (1979) N-acetyltransferase phenotype and risk in industrial urinary bladder cancer: approaches to high risk groups. In: Deichmann (ed) Toxicology and occupational medicine. Elsevier, North Holland, Amsterdam, pp 209–219

    Google Scholar 

  29. Lower GM, Nilson T, Bryan GT (1976) N-acetyltransferase phenotype of patients with “spontaneous urinary bladder cancer”. Proc Am Assoc Cancer Res 17:203

    Google Scholar 

  30. Neumann HG (1980) Biochemical effects and early lesions in regard to dose-response studies. Oncology 37:255–258

    Google Scholar 

  31. Neumann HG (1981) Bestimmung Hämoglobin-gebundener Metaboliten als Biomonitoring-Verfahren für aromatische Amine. — Arbeitspapier des Arbeitskreises Analysen in biologischem Material der Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe.

  32. Neumann HG (1983) Dosimetry and dose-response relationships. International Seminar on Methods of Monitoring Human Exposure to Carcinogenic and Mutagenic Agents, Finland

    Google Scholar 

  33. Neumann HG, Metzler M, Toepner W (1977) Metabolic activation of diethylstilbestrol and aminostilbene derivatives. Arch Toxicol 39:21–30

    Google Scholar 

  34. Parke DV (1960) Studies in detoxication, 84. The metabolism of [14C]-aniline in the rabbit and other animals. Biochem J 77:493–503

    Google Scholar 

  35. Pereira MA, Lin LHC, Chang LW (1981) Doses-depending of 2-acetylaminofluorene binding to liver DNA and hemoglobin in mice and rats. Toxicol Appl Pharmacol 60:472–478

    Google Scholar 

  36. Perry HM Jr, Tan EM, Carmody S, Sakamoto A (1970) Relationship of acetyltransferase activity to antinuclear antibodies and toxic symptoms in hypertensive patients treated with hydralazine. J Lab Clin Med 76:114–125

    Google Scholar 

  37. Piotrowski J (1961) Metabolizm niskich dawek aniliny u krolikow. (Metabolism of small doses of aniline in rabbits.) Med Pracy 12:309–317

    Google Scholar 

  38. Piotrowski JK (1977) Exposure tests for organic compounds in industrial toxicology. US Government Printing Office, Washington, DC: 70–75

    Google Scholar 

  39. Richterich R, Colombo JP (1978) Klinische Chemie, Theorie, Praxis, Interpretation. S Karger, Basel, pp 435–454

    Google Scholar 

  40. Smith JN, Williams RT (1959) The fate of aniline in the rabbit. Biochem J 44:242–250

    Google Scholar 

  41. Strandberg I, Boman G, Hassler L, Sjögvist F (1976) Acetylator phenotype in patients with hydralazine-induced lupoid syndrome. Acta Med Scand 200:367–371

    Google Scholar 

  42. Tannenbaum SR, Skipper PL, Green LC, Turewski RJ, Kadlubar FF (1983) Monitoring exposure to 4-aminobiphenyl via blood protein adducts. International Seminar on Methods of Monitoring Human Exposure to Carcinogenic and Mutagenic Agents, Finland

    Google Scholar 

  43. Uehleke H (1973) Mechanisms of methemoglobin formation by therapeutic and environmental agents. Proc 5th Int Congr Pharmacol, vol 2:124

    Google Scholar 

  44. Weber WW (1973) Acetylation of drugs. In: Fishman WH (ed) Metabolic conjugation and metabolic hydrolysis, vol 3. Academic Press, New York, pp 249–296

    Google Scholar 

  45. Weber WW, Glowinski IB (1980) Acetylation. In: Jakoby WB (ed) Enzymatic basis of detoxication, vol II. Academic Press, New York, pp 169–186

    Google Scholar 

  46. Wieland E, Neumann HG (1978) Methemoglobin formation and binding to blood constituents as indicators for the formation, availability, reactivity of activated metabolites derived from trans-4-aminostilbene and related aromatic amines. Arch Toxicol 40:17–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewalter, J., Korallus, U. Blood protein conjugates and acetylation of aromatic amines. Int. Arch Occup Environ Heath 56, 179–196 (1985). https://doi.org/10.1007/BF00396596

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00396596

Key words

Navigation