Skip to main content
Log in

Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Relations among exercise acidosis and various electrolyte concentrations in plasma of femoral venous blood were investigated during bicycling. At equal work rates the changes in endurance trained athletes were compared with the changes in non-athletes. The increase of [Ca++] and [Mg++] could be explained by hemoconcentration. In untrained [H+], [K+], [orthophosphate] (P i ), [lactate] (Lac) and [protein] (Prot) increased significantly more than in trained subjects. Actual [HCO3 ] rose at low work rates, at higher rates it decreased in the untrained while remaining constant in the athletes. [Cl] did not change during work. Na+ shift into the working muscles must occur. A high correlation does exist between [H+] and [K+], [P i ] and Na+ shift, respectively. This confirms the concept of a strong interaction between the H+ and the Na+−K+ transport. Probably P i follows K+ through the cell membrane. From the ratio of K+ and P i release it might be possible to calculate the intracellular pH. The calculated osmolality (Osm) increased more in untrained than in trained subjects primarily caused by changes in [Lac] and [HCO3 ].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrams, W. B., Lewis, D. W., Bellet, S.: The effect of acidosis and alkalosis on the plasma potassium concentration and the electrocardiogram of normal and potassium depleted dogs. Amer. J. med. Sci.222, 506–515 (1951)

    Google Scholar 

  2. Adler, S., Roy, A., Relman, A. S.: Intracellular acid-base regulation. I. The response of muscle cells to changes in CO2 tension or extracellular bicarbonate concentration. J. clin. Invest.44, 8–20 (1965)

    Google Scholar 

  3. Ahlborg, B., Bergström, J., Ekelund, L. G., Hultmann, E.: Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta physiol. scand.70, 129–142 (1967)

    Google Scholar 

  4. Astrup, P.: A simple electrometric technique for the determination of carbondioxide tension in blood and plasma, total content of carbon-dioxide in plasma and bicarbonate content in “separated” plasma at a fixed carbon-dioxide tension (40 mm Hg). Scand. J. clin. Lab. Invest.8, 33–43 (1956)

    Google Scholar 

  5. Bärtschi, F., Haab, P., Held, D. R.: Reliability of bloodpCO2-measurements by the CO2-electrode, the whole blood CO2/pH method and the Astrup method. Resp. Physiol.10, 121–131 (1970)

    Google Scholar 

  6. Bittar, E. E., Watt, M. F., Pateras, V. R., Parrish, A. E.: The pH of muscle in Laennec's cirrhosis and uremia. Clin. Sci.23, 265–276 (1962)

    Google Scholar 

  7. Böning, D., Schweigert, U., Tibes, U., Hemmer, B.: “In vivo” and “in vitro” investigations on the oxygen dissociation curve of blood of trained and untrained subjects during exercise. Pflügers Arch.332, Suppl. R78 (1972)

    Google Scholar 

  8. Cain, D. F., Infante, A. A., Davies, R. E.: Chemistry of muscle contraction, adenosine triphosphate and phosphorylcreatine as energy supplies for single contractions of working muscle. Nature (Lond.)196, 214–217 (1962)

    Google Scholar 

  9. Davies, R. E., Keynes, R. D.: A coupled sodium—potassium pump. In: Membrane Transport and Metabolism, p. 336. New York: Academic Press 1961

    Google Scholar 

  10. De Lanne, R., Barnes, J. R., Brouha, L.: Changes in osmotic pressure and ionic concentrations of plasma during muscular work and recovery. J. appl. Physiol.14, 804–808 (1959)

    Google Scholar 

  11. Dill, D. B., Talbott, J. H., Edwards, H. T.: Studies in muscular activity. VI. Response of several individuals to a fixed task. J. Physiol. (Lond.)69, 267–305 (1930)

    Google Scholar 

  12. Documenta Geigy Wissenschaftliche Tabellen, 6. Aufl. Basel 1960

  13. Ewig, W., Wiener, R.: Über die Wirkungen maximaler körperlicher Anstrengungen. V. Der Einfluß einer einmaligen maximalen Anstrengung auf die chemische Blutzusammensetzung. Z. ges. exp. Med.61, 562–589 (1928)

    Google Scholar 

  14. Farber, S. J., Pellegrino, E. D., Conan, N. J., Earle, D. P.: Observations on the plasma potassium level of man. Amer. J. med. Sci.221, 678–687 (1951)

    Google Scholar 

  15. Fenn, W. O.: Loss of potassium in voluntary contraction. Amer. J. Physiol.120, 675–680 (1937)

    Google Scholar 

  16. Fenn, W. O.: The deposition of potassium and phosphate with glycogen in rat livers. J. biol. Chem.128, 297–307 (1939)

    Google Scholar 

  17. Grob, D., Liljestrand, Ä., Johns, R. J.: Potassium movement in normal subjects. Effect on muscle function. Amer. J. Med.23, 340–355 (1957)

    Google Scholar 

  18. Henderson, L. J.: Blut — seine Pathologie und Physiologie, dtsch. von M. Tennenbaum. Dresden-Leipzig 1932

  19. Hill, A. V.: Muscular activity. The Herter Lectures for 1924. Baltimore: The Williams and Wilkins Co. 1926

    Google Scholar 

  20. Hinsberg, K., Lang, K.: Medizinische Chemie für den klinischen und theoretischen Gebrauch. München-Berlin-Wien: Urban & Schwarzenberg 1957

    Google Scholar 

  21. Hodgkin, A. L., Horowitz, P.: Movements of Na and K in single muscle fibres. J. Physiol. (Lond.)145, 405–432 (1959)

    Google Scholar 

  22. Hultman, E.: Physiological role of muscle glycogen in man, with special reference to exercise. Suppl. I to Circulat. Res. XX and XXI, I-99–I-114 (1967)

  23. Irvine, R. O. H., Dow, J.: Muscle cell pH and potassium movement in metabolic acidosis. Metabolism17, 563–570 (1968)

    Google Scholar 

  24. Karlsson, J.: Lactate and phosphagen concentrations in working muscle of man. Acta physiol. scand., Suppl. 358 (1971)

  25. Keynes, R. D.: Dependence of the sodium efflux from frog muscle on internal sodium concentration and internal pH. J. Physiol. (Lond.)166, p. 16–17 (1963)

    Google Scholar 

  26. Kilburn, K. H.: Muscular origin of elevated plasma potassium during exercise. J. appl. Physiol.21, 675–678 (1966)

    Google Scholar 

  27. Koller, S.: Statistische Auswertung der Versuchsergebnisse. In: Handb. physiol. pathol.-chem. Anal., edit. by K. Lang and E. Lehnartz, vol. 2, pp. 931–1036. Berlin-Göttingen-Heidelberg: Springer 1955

    Google Scholar 

  28. Kraus, H., Kirsten, R., Wolff, J. R.: Die Wirkung von Schwimm- und Lauf-training auf die celluläre Funktion und Struktur des Muskels. Pflügers Arch.308, 57–79 (1969)

    Google Scholar 

  29. Kutscha, W., Pauschinger, P., Brecht, K.: Der Einfluß der H-Ionen auf Elektrolytgehalt, Membranpotential und Kontraktion tonischer und phasischer Skeletmuskeln. Pflügers Arch. ges. Physiol.280, 1–21 (1964)

    Google Scholar 

  30. Linder, A.: Statistische Methoden für Naturwissenschaftler, Mediziner und Ingenieure. Basel-Stuttgart: Birkhäuser 1957

    Google Scholar 

  31. Maschio, G., Bazzato, G., Bertalia, E., Sardini, D., Mioni, G., D'Angelo, A., Marzo, A.: Intracellular pH and electrolyte content of skeletal muscle in patients with chronic renal acidosis. Nephron7, 481–487 (1970)

    Google Scholar 

  32. Mudge, G. H., Vislocky, K.: Electrolyte changes in human striated muscle in acidosis and alkalosis. J. clin. Invest.28, 482–486 (1949)

    Google Scholar 

  33. Nylin, G.: The effect of heavy muscular work on the volume of circulating red corpuscle in man. Amer. J. Physiol.149, 180–184 (1947)

    Google Scholar 

  34. Poortmans, J. R.: Serum protein determination during short exhaustive physical activity. J. appl. Physiol.30, 190–192 (1971)

    Google Scholar 

  35. Rooth, G.: Acid-base, electrolyte and water changes during tissue hypoxia in rats. Clin. Sci.30, 417–424 (1966)

    Google Scholar 

  36. Rougier, G., Babin, J. P.: Influence des activités physiques sur les electrolytes sériques et musculaires. Path.-Biol.17, 411–427 (1969)

    Google Scholar 

  37. Scribner, B. H., Burnell, J. M.: Symposium: Water and electrolytes. I. Interpretation of the serum potassium concentration. Metabolism5, 468–479 (1956)

    Google Scholar 

  38. Siggaard-Andersen, O., Engel, K.: A new acid-base nomogram. An improved method for the calculation of the relevant blood acid-base data. Scand. J. clin. Lab. Invest.12, 177–186 (1960)

    Google Scholar 

  39. Simmons, H. D., Avedon, M.: Acid-base alterations and plasma potassium concentration. Amer. J. Physiol.197, 319–326 (1959)

    Google Scholar 

  40. Sréter, F. A.: Distribution of water, sodium and potassium in resting and stimulated mammalian muscle. Canad. J. Biochem. Physiol.41, 1035–1045 (1963)

    Google Scholar 

  41. Stryjecka-Rowinska, P.: Intracellular pH of skeletal muscles in dog in health and in metabolic acidosis. Bull. Acad. Sci. Pol. Bio.19, 517–520 (1968)

    Google Scholar 

  42. Varnauskas, E., Björntorp, P., Fahlen, M., Prerovsky, I., Sternberg, J.: Effects of physical training on exercise blood flow and encymatic activity in skeletal muscle. Cardiovasc. Res4, 418–422 (1970)

    Google Scholar 

  43. Volle, R. L., Glisson, S. N., Henderson, E. G.: Influence of H+ on42K-exchange in sartorius muscle treated with barium or aminoacridine. Pflügers Arch.337, 241–256 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Bundesinstitut für Sportwissenschaften, 5023 Lövenich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tibes, U., Hemmer, B., Schweigart, U. et al. Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pflugers Arch. 347, 145–158 (1974). https://doi.org/10.1007/BF00592396

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00592396

Key words

Navigation