Skip to main content
Log in

Heart rate threshold related to lactate turn point and steady-state exercise on a cycle ergometer

  • Original Articles
  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate heart rate threshold (HRT) related exercise intensities by means of two endurance cycle ergometer tests using blood lactate concentration. [La], pulmonary ventilation (\(\dot V\) E), oxygen uptake (\(\dot V{\text{O}}_{\text{2}} \)), heart rate (HR) and electromyogram (EMG) activity of working muscle. Firstly, 16 healthy female students [age, 21.4 (SD 2.8) years; height, 167.1 (SD 5.1) cm; body mass 62.7 (SD 7.1) kg] performed an incremental exercise test (10 W each minute) on an electrically braked cycle ergometer until they felt exhausted. The HRT and lactate turn point (LTP) were assessed by means of computer-aided linear regression break point analysis from the relationship of HR or [La] to power output. No significant difference was found between HRT and LTP for all the variables measured. Secondly, two endurance tests (ET) of 20 min duration were performed by 7 subjects. The first (ET I) was performed at an exercise intensity which was about 10% lower than the power output at HRT [61.2 (SD 3.1) % maximal oxygen uptake (\(\dot V{\text{O}}_{\text{2}} \) max)], the second (ET II) at an exercise intensity about 10% higher than the power output at HRT [79.2 (SD 3.4) %\(\dot V{\text{O}}_{\text{2}} \) max]. The parameters measured showed a clear steady state in ET I. All mean values were lower than values at HRT [power, 138.7 (SD 18.9) W; HR, 172.1 (SD 4.7) beats·min−1;\(\dot V{\text{O}}_{\text{2}} \), 2.2 (SD 0.3) l·min−1;\(\dot V\) E, 54.0 (SD 9.1) l·min−1; [La], 3.7 (SD 1.1) mmol·l−1; EMG, 81.1 (SD 24.0) μV] except HR which was the same. No parameters showed a steady state (except EMG activity) in ET II. No subject was able to maintain the exercise for the whole 20 min in ET II [mean time to cessation of the exercise was 10.4 (SD 3.7) min]. At the end of ET II all variables measured were significantly higher (P < 0.05) than in ET I (except EMG activity) [HR, 184.3 (SD 5.2) and 172.1 (SD 8.7) beats·min1;\(\dot V\) E: 75.2 (SD 11.7) and 49.6 (SD 8.4) l·min−1;\(\dot V{\text{O}}_{\text{2}} \), 2.9 (SD 0.7) and 2.1 (SD 0.5) l·min−1; [La], 7.0 (SD 1.8) and 3.3 (SD 2.2) mmol·l−1; EMG, 86.3 (SD 28.7) and 75.9 (SD 21.5) μV]. Although no exercise, at HRT exactly was performed, we assume that maximal steady state lay in between ET I and ET II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airaksinen O, Remes A, Kolari P, Sihvonen T, Hänninen O, Penttilä I (1992) Real-time evaluation of anaerobic threshold with RMS-EMG of working and nonworking muscles during incremental bicycle ergometer test. Int J Acupunct ElectTherapeut 17:259–271

    Google Scholar 

  • Aro TA, Kelly JM (1989) Can the lactate steady state be determined by the heart rate-running velocity relationship? Med Sci Sports Exerc [Suppl] : 21–23

  • Astrand PO, Rodahl K (1986) Textbook of work physiology. McGraw Hill, New York

    Google Scholar 

  • Aunola S (1991) Aerobic and anaerobic thresholds as tools for estimating submaximal endurance capacity. Publications of Social Insurance Institution, ML: 109. Thesis, University of Turku, Finland

    Google Scholar 

  • Aunola S, Rusko H (1992) Does anaerobic threshold correlate with maximal lactate steady state? J Sports Sci 10:309–323

    Google Scholar 

  • Bachl N (1984) Specifity and test precision of the anaerobic threshold. In: Löllgen H, Mellerowicz H (eds) Progress in ergometry: quality control and test criteria. Springer, Berlin Heidelberg New York, pp 92–105

    Google Scholar 

  • Beneke R, Boldke F, Meller W, Behn C (1991) Das maximale Laktat-Steady-State (MaxLass) im Eisschnellauf. In: Bernett P, Jeschke D (eds) Sport and Medizin, Pro and Contra. Zukkerschwerdt, Munich, pp 766–767

    Google Scholar 

  • Brooks GA (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17:22–31

    Google Scholar 

  • Bunc V, Heller J (1992) Comparison of two methods of noninvasive anaerobic threshold determination in middle-aged men. Sports Med Training Rehabil 3:97–94

    Google Scholar 

  • Bunc V, Heller J, Leso J, Sprynarova S, Zdanowicz R (1987) Ventilatory threshold in various groups of highly trained athletes. Int J Sports Med 8:275–280

    Google Scholar 

  • Bunc V, Hofmann P, Gaisl G (1989) Vergleich zweier nichtinvasiver Methoden zur Bestimmung der anaerobes Schwelle. Med Sport 29:75–77

    Google Scholar 

  • Chwilkowski N, Völker K, Hollmann W (1989) The validity of the Conconi test in the determination of the anaerobic threshold in swimming. In: Böning D, Braumann KM, Busse MW, Maassen N, Schmidt W (eds) Sport — Rettung oder Risiko für die Gesundheit? Deutscher Arzteverlag, Cologne, pp 357–360

    Google Scholar 

  • Conconi F, Ferrari M, Ziglio PG, Droghetti P, Codeca L (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 52:869–873

    Google Scholar 

  • Conconi F, Ferrari M, Ziglio PG, Droghetti P, Borsetto C, Casoni I, Cellini M, Paolini AR (1984) Determination of the anaerobic threshold by a noninvasive fieldtest in running and other sport activities. In: Bachl N, Prokop L, Suckert R (eds) Current topics in sports medicine. Urban and Schwarzenberg, Vienna, pp 271–281

    Google Scholar 

  • Davis JA, Caiozzo VJ, Lamarra N, Ellis JF, Vandagriff R, Prietto CA, McMaster WC (1983a) Does the gas exchange anaerobic threshold occur at a fixed blood lactate concentration of 2 or 4 mM? Int J Sports Med 4:89–93

    Google Scholar 

  • Davis A, Bassett J, Hughes P, Gass GC (1983b) Anaerobic threshold and lactate turnpoint. Eur J Appl Physiol 50:383–392

    Google Scholar 

  • Droghetti P, Borsetto C, Casoni I, Cellini M, Ferrari M, Paolini AR, Ziglio PG, Conconi F (1985) Noninvasive determination of the anaerobic threshold in canoing, cross country skiing, cycling, roller and iceskating, rowing and walking. Eur J Appl Physiol 53:299–303

    Google Scholar 

  • Francis TK, McClatchey PR, Sumsion JR, Hansen DE (1989) The relationship between anaerobic threshold and heart rate linearity during cycle ergometry. Eur J Appl Physiol 59:273–277

    Google Scholar 

  • Gaisl G, Hofmann P (1991) Heart rate threshold — standardization of the modified Conconi-test for sedentary persons. In: Bachl N, et al (eds) Advances in ergometry. Springer, Berlin Heidelberg New York, pp 233–238

    Google Scholar 

  • Gaisl G, Wiesspeiner G (1988) A noninvasive method of determining the anaerobic threshold in children. Int J Sports Med 9:41–44

    Google Scholar 

  • Gaisl G, Hofmann P, Leitner H (1992) Comparison of calculated and measured values of the anaerobic threshold with pupils aged 11—13 years. Med Sport Bohemosl 1:20–24

    Google Scholar 

  • Graham TE, Andrew GM (1973) The variability of repeated measurements of oxygen debt in man following a maximal treadmill exercise. Med Sci Sports 5:73–78

    Google Scholar 

  • Hagberg JM (1984) Physiological implications of the lactate threshold. Int J Sports Med [Suppl] 5:106–109

    Google Scholar 

  • Heck H (1990) Laktat in der Leistungsdiagnostik. Hofmann, Schorndorf

    Google Scholar 

  • Heck H, Hess G, Mader A (1985a) Vergleichende Untersuchung zu verschiedenen Laktat-Schwellenkonzepten. Dtsch Z Sportmed 1:19–25; 2:40-52

    Google Scholar 

  • Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W (1985b) Justification of the 4 mmol/l lactate threshold. Int J Sports Med 6:117–130

    Google Scholar 

  • Heck H, Tiberi M, Beckers K, Lammerschmidt W, Pruin W, Hollmann W (1989) Lactic acid concentration during bicycle ergometer exercise with preselected percentages of the Conconi-threshold. In: Böning D, Braumann KM, Busse MW, Maassen N, Schmidt W (eds) Sport — Rettung oder Risiko fur die Gesundheit? Deutscher Ärzteverlag, Cologne, pp 361–366

    Google Scholar 

  • Heck H, Roßkopf P, Hirsch A, Hoberg T, Hoppe W, Reichwein R (1991) The effect of preexercise lactate, duration of break and the increase of workload on the lactate turnpoint. Dtsch Z Sportmed 42:248–263

    Google Scholar 

  • Helal JN, Guezennec CY, Goubel F (1987) The aerobic-anaerobic transition: re-examination of the threshold concept including an electromyographic approach. Eur J Appl Physiol 56:643–649

    Google Scholar 

  • Hickey MS, Costill DL, McConell GK, Widrick JJ, Tanaka H (1992) Day to day variation in time trial cycling performance. Int J Sports Med 13:467–470

    Google Scholar 

  • Hofmann P (1990) Vergleichende Untersuchung zu verschiedenen blutigen und unblutigen Bestimmungsverfahren der anaeroben Schwelle und ihre Anwendung in der praktischen Trainingssteuerung. Thesis, University of Graz, Austria

    Google Scholar 

  • Hofmann P, Leitner H, Gaisl G, Neuhold C (1990) A computer supported evaluation of modified Conconi-test on bicycle ergometer. In: Jarver J (tr) A collection of European sports science translations, 1. South Australian Sports Institute, Kidman Park, S.A., pp 51–52

    Google Scholar 

  • Hofmann P, Leitner H, Gaisl G (1991) Heart rate threshold, lactate turn point and anaerobic threshold determination by electromyography. Hung Rev Sports Med 33:13–20

    Google Scholar 

  • Hofmann P, Pokan R, Preidler K, Leitner H, Szolar D, Eber B, Schwaberger G (1994) Relationship between heart rate threshold, lactate turn point and myocardial function. Int J Sports Med 15:232–237

    Google Scholar 

  • Hollmann W (1985) Historical remarks on the development of the aerobic-anaerobic threshold up to 1966. Int J Sports Med 6:109–116

    Google Scholar 

  • Kindermann W, Simon G, Keul J (1978) Dauertraining — Ermittlung der optimalen Trainingsherzfrequenz und Leistungsfähigkeit. Leistungssport 8:34–39

    Google Scholar 

  • Krüger J, Mortier R, Heck H, Hollmann W (1989) Relationship between the Conconi-threshold and lactic acid at endurance workload on the crank ergometer. In: Böning D, Braumann KM, Busse MW, Maasen N, Schmidt W (eds) Sport — Rettung oder Risiko fur die Gesundheit? Deutscher Ärzteverlag, Cologne, pp 367–371

    Google Scholar 

  • Krüger J, Schnettler S, Heck H, Hollmann W (1990) Relationship between rectangular-triangular increasing workload and maximal-lactate-steady-state on the crank ergometer. In: Hermans GPH (ed) Sports, medicine and health. Elsevier, Amsterdam, pp 685–690

    Google Scholar 

  • Leger L, Tokmakidis S (1988) Use of the heart rate deflection point to assess the anaerobic threshold. J Appl Physiol 64:1758–1759

    Google Scholar 

  • Mader A, Heck H (1986) A theory of the metabolic origin of the “anaerobic threshold”. Int J Sports Med [Suppl] 7:45–65

    Google Scholar 

  • Mader A, Heck H, Hollmann W (1983) A computer simulation model of energy output in relation to metabolic rate and internal environment. In: Knuttgen HG, Vogel JA, Poortmans J (eds) Biochemistry of exercise. International Series on Sports Sciences, vol 13. Human Kinetics, Champaign, Ill., pp 239–251

    Google Scholar 

  • Moritani T, Vries HA de (1980) Anaerobic threshold determination by surface elektromyography. Med Sci Sports Exerc 12:86

    Google Scholar 

  • Pansold B, Zinner J (1993) Zur Methodik von Stufentests und zur Zuverlässigkeit von Ergebnissen aus Laktat-Leistungskurven. Osterr J Sportmed 23:102–116

    Google Scholar 

  • Pellegrino JA, Browe AC (1986) The effect of treadmill protocol upon lactate, ventilatory and temperature thresholds in man. Med Sci Sports Exerc [Suppl] 18:97

    Google Scholar 

  • Pendergast P, Ceretelli P, Rennie DW (1979) Aerobic and glycolytic metabolism in arm exercise. J Appl Physiol 47:754–760

    Google Scholar 

  • Pereira MA, Maliszewski AF, Freedson PS (1992) Intraindividual variation during submaximal exercise (abstract). Int J Sports Med 13:100

    Google Scholar 

  • Petrofski JS (1979) Frequency and amplitude analysis of the EMG during exercise on the bicycle ergometer. Eur J Appl Physiol 41:1–15

    Google Scholar 

  • Pokan R, Hofmann P, Preidler K, Leitner H, Dusleag J, Eber B, Schwaberger G, Füger GF, Klein W (1993) Correlation between deflection of heart rate/performance curve and myocardial function in exhausting cycle ergometer exercise. Eur J Appl Physiol 67:385–388

    Google Scholar 

  • Ribeiro JP, Fielding RA, Hughes V, Black A, Bochese MA, Knuttgen HG (1985) Heart rate break point may coincide with the anaerobic and not the aerobic threshold. Int J Sports Med 6:220–224

    Google Scholar 

  • Stegmann H, Kindermann W (1982) Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold at 4 mmol/l lactate. Int J Sports Med 3:105–110

    Google Scholar 

  • Tiedt N, Wohlgemuth B, Wohlgemuth P (1973) Die statische Kennlinie der Belastungsherzfrequenz. Med Sport 13:87–94

    Google Scholar 

  • Urhausen A, Coen B, Weiler B, Kindermann W (1989) Comparative studies for the determination of the anaerobic threshold: Conconi test versus lactate measurements. Dtsch Z Sportmed 40:402–410

    Google Scholar 

  • Viitasalo JT, Komi PV (1980) EMG, reflex and reaction time components, muscle structure and fatigue during intermittent isometric contractions in man. Int J Sports Med 1:185–190

    Google Scholar 

  • Wakayoshi K, Yoshida T, Udo M, Harada T, Moritani T, Mutoh Y, Miyashita M (1993) Does critical swimming velocity represent intensity at maximal lactate steady state? Eur J Appl Physiol 66:90–95

    Google Scholar 

  • Wasserman K, Whipp BJ, Koyal SN (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243

    Google Scholar 

  • Yamamoto Y, Miyashita M, Hughson RL, Tamura S, Shinohara M, Mutoh Y (1991) The ventilatory threshold gives maximal steady state. Eur J Appl Physiol 63:55–59

    Google Scholar 

  • Yoshida T (1987) Current topics and concepts of lactate and gas exchange thresholds. J Hum Ergol 16:103–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, P., Bunc, V., Leitner, H. et al. Heart rate threshold related to lactate turn point and steady-state exercise on a cycle ergometer. Europ. J. Appl. Physiol. 69, 132–139 (1994). https://doi.org/10.1007/BF00609405

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00609405

Key words

Navigation