Skip to main content
Log in

Immunohistochemical demonstration of serum proteins in human cerebral gliomas

  • Regular Papers
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

The leakage of different serum proteins, including immunoglobulins, into human cerebral gliomas was studied by use of the unlabeled peroxidase-antiperoxidase (PAP) method on cryostat and paraffin sections. Our series of 50 tumour biopsies included 21 isomorphic astrocytomas and oligodendrogliomas (grade II), 19 anaplastic astrocytomas and oligodendrogliomas (grade III), and 10 glioblastomas (grade IV). The immunohistochemical staining of the serum proteins was similar on paraffin and cryostat sections and graded with respect to occurrence, distribution, and intensity. Serum proteins of a small hydrodynamic radius with a low serum concentration (prealbumin) or with a high serum concentration (albumin) were diffusely present in the interstitial spaces of all glioma types. Serum proteins with a medium molecular size and variable serum concentrations, i. e. IgG, IgA, and ceruloplasmin, were detected preferentially in anaplastic gliomas and in glioblastomas (grade III and IV) displaying comparable distribution patterns but different intensities. Alpha-2-macroglobulin a serum protein with a large hydrodynamic radius was also demonstrated in grade III and IV gliomas, whereas IgM and beta-lipoprotein being the largest serum proteins tested were almost restricted to blood vessels and tumour necroses. In addition, most serum proteins occurred with high intensities in those areas of isomorphic grade II gliomas that showed a macro-or microcystic or mucinous tissue degeneration. The varying immunohistochemical staining results for the serum protiens studied indicate that the blood-brain barrier within isomorphic and anaplastic gliomas is not completely disturbed. It appears that the vascular permeability is preferentially increased for small-sized serum proteins, whereas the leakage of larger serum proteins into the glioma interstitium seems to depend on the tumour type and on increasing malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbosa-Coutinho LM, Hartmann A, Hossmann K-A, Rommel T (1985) Effect of dexamethason serum protein extravasation in experimental brain infarcts of monkey: an immunohistochemical study. Acta Neuropathol (Berl) 65:255–260

    Google Scholar 

  • Blasberg R (1980) Pharmacokinetics and metastatic brain tumor chemotherapy. In: Weiss L, Gilbert HA, Posner JB (eds) Brain metastasis. Hall, Boston, pp 146–164

    Google Scholar 

  • Blasberg RG, Kobayashi T, Horowitz M, Rice JM, Groothius D, Molnar P, Fenstermacher JD (1983) Regional blood-totissue transport in ethylnitrosourea (ENU)-induced brain tumours. Ann Neurol 14:205–215

    Google Scholar 

  • Blasberg RG, Shapiro WR, Molnar P, Patlak CS, Fenstermacher JD (1984) Local blood-to-tissue transport in Walker 256 brain tumors. J Neurooncol 2:205–218

    Google Scholar 

  • Brett M, Weller RO (1978) Intracellular serum proteins in cerebral gliomas and metastatic tumours: an immunoperoxidase study. Neuropathol Appl Neurobiol 4:263–272

    Google Scholar 

  • Burger PC, Dubois PJ, Schold SC, Smith KR, Odom GL, Crafts DC, Giangaspero F (1983) Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg 58:159–169

    Google Scholar 

  • Cumings JN (1961) Soluble cerebral proteins in normal and oedematous brain. J Clin Pathol 14:289–294

    Google Scholar 

  • Davson H (1976) The blood-brain barrier. J Physiol 255:1–28

    Google Scholar 

  • Eriksen HO, Clemmensen I, Hansen MS, Ibsen KK (1982) Plasma fibronection concentration in normal subjects. Scand J Clin Lab Invest 42:291–295

    Google Scholar 

  • Felgenhauer K (1974) Protein size and cerebrospinal fluid composition. Klin Wochenschr 52:1158–1164

    Google Scholar 

  • Felgenhauer K (1980) Protein filtration and secretion at human body fluid barriers. Pflügers Arch 384:9–17

    Google Scholar 

  • Felgenhauer K, Schliep G, Rapic N (1976) Evaluation of the blood-CSF barrier by protein gradients and the humoral immune response within the central nervous system. J Neurol Sci 30:113–128

    Google Scholar 

  • Ginsbourg M, Foncin JF, Le Beau J, Saffroy M (1973) Les anomalies vasculaires des tumeurs cérébrales. Etude comparative de láctivité enzymatique et de la perméabilité aux traceurs fluorescents. Rev Neurol (Paris) 129:275–288

    Google Scholar 

  • Goldstein GW, Betz AL (1983) Recent advances in understanding brain capillary function. An Neurol 14:389–395

    Google Scholar 

  • Groothius DR, Fischer JM, Lapin F, Bigner DD, Vick NA (1982) Permeability of different brain tumor models to horseradish peroxidase. J Neuropathol Exp Neurol 41:164–185

    Google Scholar 

  • Hirano A, Matsui T (1975) Vascular structures in brain tumors. Human Pathol 6:611–621

    Google Scholar 

  • Kochi N, Tani E, Morimura T, Itagaki T (1983) Immunohistochemical study of fibronectin in human glioma and meningioma. Acta Neuropathol (Berl) 59:119–126

    Google Scholar 

  • Lee JC (1982) Anatomy of the blood-brain barrier under normal and pathological conditions. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Charles Thomas, Springfield, pp 798–870

    Google Scholar 

  • Lilja A, Bergström, K, Spännare B, Olsson Y (1981) Reliability of computed tomography in assessing histopathological features of malignant supratentorial gliomas. J Compat Assist Tomogr 5:625–636

    Google Scholar 

  • Long DM (1970) Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors. J Neurosurg 32:127–144

    Google Scholar 

  • Long RG, McAfee JG, Winkelman J (1963) Evaluation of radioactive compounds for the external detection of cerebral tumours. Cancer Res 23:98–108

    Google Scholar 

  • Manz HJ (1974) The pathology of cerebral edema. Human Pathol 5:291–313

    Google Scholar 

  • McComb RD, Bigner DD (1984) The biology of malignant gliomas—a comprehensive survey. Clin Neuropathol 3:93–106

    Google Scholar 

  • Mosesson MW, Amrani DL (1980) The structure and biologic activities of plasma fibronectin. Blood 56:145–158

    Google Scholar 

  • Nag S (1984) Cerebral changes in chronic hypertension: combined permeability and immunohistochemical studies. Acta Neuropathol (Berl) 62:178–184

    Google Scholar 

  • Nishio S, Ohta M, Abe M, Kitamura K (1983) Microvascular abnormalities in ethylnitrosourea (ENU)-induced rat brain tumors: structural basis for altered blood-brain barrier function. Acta Neuropathol (Berl) 59:1–10

    Google Scholar 

  • Order SE (1982) Monoclonal antibodies: potential role in radiation therapy and oncology. Int J Radiat Oncol Biol Phys 8:1193–1201

    Google Scholar 

  • Poon TP, Hirano A, Zimmerman HM (1971) Electron microscopic allas of brain tumors. Grune and Stratton, New York London, pp 12–29

    Google Scholar 

  • Raimondi AJ (1964) Localization of radio-iodinated serum albumin in human glioma. An Electron-microscopic study. Arch Neurol 11:173–184

    Google Scholar 

  • Seitz RJ, Wechsler W (1984) Immunocytochemical studies on the vascularisation and on the blood-brain barrier of human gliomas. Acta Neurochir (Wien) 72:147

    Google Scholar 

  • Seitz RJ, Wechsler W (1985) Immunzytochemische Untersuchungen zur Vaskularisierung und Störung der Blut-Hirn Schranke menschlicher Gliome. Verh Dtsch Ges Pathol 69:441

    Google Scholar 

  • Seitz RJ, Wechsler W (1986) Vascularization of human gliomas—a lectin-cytochemical and morphometric study. In: Walker MD, Thomas DGT (eds) Biology of Brain Tumour. Martinus Nijhoff Publishers, Boston, pp 131–137

    Google Scholar 

  • Spatz M, Mrsula BB (1982) Progress in cerebral microvascular studies related to the function of the blood-brain barrier. Adv Cell Neurobiol 3:311–337

    Google Scholar 

  • Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigenantibody complex (horseradish peroxidase-antihoreseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    Google Scholar 

  • Szymaś J, Hossmann KA (1984) Immunofluoroscopic investigation of extravasation of serum proteins in human brain tumours and adjacent structures. Acta Neurochir (Wien) 71:229–241

    Google Scholar 

  • Vick NA, Khandekar JD, Bigner DD (1977) Chemotherapy of brain tumors. The “blood-brain barrier” is not a factor. Arch Neurol 34:523–526

    Google Scholar 

  • Weller RO, Foy M, Cox S (1977) The development and ultrastructure of the microvasculature in malignant gliomas. Neuropathol Appl Neurobiol 3:307–322

    Google Scholar 

  • W. H. O (World Health Organisation) (1979) International histological classification of tumours. No. 21. In: Zülch KJ (ed) Histological typing of tumours of the central nervous system

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft, SFB 200

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seitz, R.J., Wechsler, W. Immunohistochemical demonstration of serum proteins in human cerebral gliomas. Acta Neuropathol 73, 145–152 (1987). https://doi.org/10.1007/BF00693780

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00693780

Key words

Navigation