Skip to main content

Advertisement

Log in

Metabolism of nitrogen-13 labelled ammonia in different conditions in dogs, human volunteers and transplant patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

To investigate the rate of metabolism of nitrogen-13 labelled ammonia (13NH3) in different conditions, we have determined the relative amount of unchanged13NH3 in the blood of dogs, volunteers and transplant patients at different times following injection. In dogs, the determinations were made under basal conditions, during adenosine administration and after coronary occlusion. The results show that adenosine administration increases the metabolic rate whereas coronary occlusion does not affect13NH3 metabolism. For both human volunteers and transplant patients the metabolic rate of13NH3 was assessed under basal conditions and during adenosine administration.13NH3 metabolism proceeds faster in transplant patients than in volunteers under both conditions. Adenosine administration causes a faster13NH3 turnover in volunteers but not in transplant patients. Application of individual metabolite correction resulted in a 16% decrease in the calculated blood flow compared to uncorrected values. A smaller difference (5%) was observed between correction with mean metabolite values and individually acquired metabolite values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hutchins G, Schwaiger M, Rosenspire K, Krivokapich J, Schelbert H, Kuhl D. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging.J Am Coll Cardiol 1990; 15: 1032–1042.

    Google Scholar 

  2. Muzik O, Beanlands R, Hutchins G, Mangner T, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET.J Nucl Med 1993; 34: 83–91.

    Google Scholar 

  3. Kuhle WG, Porenta G, Huang SC, Buxton D, Gambhir SS, Hansen H, Phelps ME, Schelbert HR. Quantification of regional myocardial blood flow using13N-ammonia and reoriented dynamic positron emission tomographic imaging.Circulation 1992; 86: 1004–1017.

    Google Scholar 

  4. Bol A, Melin J, Vanoverschelde JL, Baudhuin T, Vogelaers D, De Pauw M, Michel C, Luxen A, Labar D, Cogneau M. Direct comparison of [13N]ammonia and [15O]water estimates of perfusion with quantification of regional myocardial blood flow by microspheres.Circulation 1993; 87: 512–525.

    Google Scholar 

  5. Duda GD, Handler P. Kinetics of ammonia metabolism in vivo.J Biol Chem 1958; 232: 303–314.

    Google Scholar 

  6. Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin J, Duffy TE, Plum F. The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia.J Clin Invest 1979; 63: 449–460.

    Google Scholar 

  7. Rosenspire KC, Schwaiger M, Mangner TJ, Hutchins GD, Sutorik A, Kuhl DE. Metabolic fate of [13N]ammonia in human and canine blood.J Nucl Med 1990; 31: 163–167.

    Google Scholar 

  8. Weinberg IN, Huang SC, Hofmann EJ, Araujo L, Nienaber C, Grover-McKay M, Dahlbom M, Schelbert H. Validation of PET-acquired input functions for cardiac studies.J Nucl Med 1988; 29: 241–247.

    Google Scholar 

  9. Wieland B, Bida G, Padgett H, Hendry G, Zippi E, Kabalka G, Morelle JL, Verbruggen R, Ghyoot M. In-target production of [13N]ammonia via proton irradiation of dilute aqueous ethanol and acetic acid mixtures.Int J Appl Radiat Isot 1991; 42: 1095–1098.

    Google Scholar 

  10. Bormans G, Langendries W, Mortelmans L, Verbruggen A. On-line anion exchange purification of [13N]NH3 produced by 10-MeV proton irradiation of dilute aqueous ethanol.Int J Appl Radiat Isot 1994; 35: 183–185.

    Google Scholar 

  11. Gupta NC, Esterbrooks D, Mohiuddin S, Hilleman D, Sunderland J, Shine CY, Frick MP. Adenosine in myocardial perfusion imaging using positron emission tomography.Am Heart J 1991; 122: 293–301.

    Google Scholar 

  12. Nuyts J, Suetens P, Oosterlinck A, De Roo M, Mortelmans L. Delineation of ECT images using global constraints and dynamic programming.IEEE Trans Med Imaging 1991; 10: 489–498.

    Google Scholar 

  13. Muzik O, Beanlands RSB, Hutchins G, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET.J Nucl Med 1993; 34: 83–91.

    Google Scholar 

  14. Krivokapich J, Stevenson LW, Kobashigawa J, Huang SC, Schelbert HR. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation.J Am Coll Cardiol 1991; 18: 512–517.

    Google Scholar 

  15. Senneff MJ, Hartman J, Sobel BE, Geltman EM, Bergmann SR. Persistence of coronary vasodilator responsivity after cardiac transplantation.Am J Cardiol 1993; 71: 333–338.

    Google Scholar 

  16. Olsson RA, Pearson JD. Cardiovascular purinereceptors.Physiol Rev 1990; 70:761–845.

    Google Scholar 

  17. Botvinick E, Frias M, O'Connell WJ, et al. Phase image evaluation of patients with ventricular pre-excitation syndromes.J Am Coll Cardiol 1984; 3: 799–814.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bormans, G., Maes, A., Langendries, W. et al. Metabolism of nitrogen-13 labelled ammonia in different conditions in dogs, human volunteers and transplant patients. Eur J Nucl Med 22, 116–121 (1995). https://doi.org/10.1007/BF00838940

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00838940

Key words

Navigation