Skip to main content
Log in

Differential alteration of dopamine, acetylcholine, and glutamate release during anoxia and/or 3,4-diaminopyridine treatment

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The potassium-stimulated release of acetylcholine (ACh), glutamate (GLU) and dopamine (DA) from mouse striatal slices was studied during anoxia and/or 3,4-diaminopyridine (DAP) treatment. Anoxia, in the presence of calcium, increased DA and GLU release, but depressed ACh release. Omission of calcium from an anoxic incubation further stimulated GLU and DA release and impaired ACh release. Under normoxic conditions, DAP (100 μM) increased the release of all three neurotransmitters; the sensitivity of the slices to DAP changed with the presence or absence of an acetylcholinesterase inhibitor in the preincubation media. During an anoxic incubation, DAP did not ameliorate the anoxic-induced, K+-stimulated impairment of ACh release, but significantly reduced the K+-stimulated release of GLU and DA. These results are consistent with the hypothesis that hypoxia induces a presynaptic deficit that may underlie postsynaptic ischemic-induced changes. Amelioration of these presynaptic alterations in neurotransmitter release may be an effective approach to preventing hypoxic-induced damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luft, U. C. 1965. Aviation physiology-The effects of altitude. Pages 1099–1145,in Fenn, W. O. and Rahn, H. (eds.), Handbook of Physiology, Vol. 2, Sec. 3: Respiration, American Physiological Society, Washington, D.C.

    Google Scholar 

  2. Siesjo, B. K. 1978. Page 398, Brain Energy Metabolism, Wiley, New York.

    Google Scholar 

  3. Gibson, G. E., Pulsinelli, W., Blass, J. P., and Duffy, T. E. 1981. Brain dysfunction in mild to moderate hypoxia. Amer. J. Med. 70:1247–1254.

    PubMed  Google Scholar 

  4. Gibson, G. E., and Peterson, C. 1982. Decreases in the release of acetylcholine with low oxygen in vitro. Biochem. Pharmacol. 31:111–115.

    PubMed  Google Scholar 

  5. Hirsch, J. A., and Gibson, G. E. 1984. Selective alteration of neurotransmitter release by low oxygen in vitro. Neurochem. Res. 9:1039–1049.

    PubMed  Google Scholar 

  6. Freeman, G. B., and Gibson, G. E. 1986. Effects of decreased oxygen on in vitro release of endogenous dopamine from mouse striatum. J. Neurochem. 47:1924–1931.

    PubMed  Google Scholar 

  7. Patuszko, A., Wilson, D. F., and Erecinska, M. 1982. Neurotransmitter metabolism in rat brain synaptosomes: effect of anoxia and pH. J. Neurochem. 38:1657–1667.

    PubMed  Google Scholar 

  8. Peterson, C., and Gibson, G. E. 1984. Synaptosomal calcium metabolism during hypoxia and 3,4-diaminopyridine treatment. J. Neurochem. 42:248–253.

    PubMed  Google Scholar 

  9. Lundh, H., and Thesleff, S. 1977. The mode of action of 4-aminopyridine and guanidine on transmitter release from motor nerve terminals. Eur. J. Pharmacol. 42:411–412.

    PubMed  Google Scholar 

  10. Glover, W. E. 1978. Potentiation of vasoconstriction by 3-and 4-aminopyridine. Br. J. Pharmacol. 63:577–585.

    PubMed  Google Scholar 

  11. Katz, B., and Miledi, R. 1969. Spontaneous and evoked activity of motor nerve endings in calcium Ringers. J. Physiol. (Lond.) 203:689–706.

    Google Scholar 

  12. Katz, B., and Miledi, R. 1979. Estimates of quantal content during “chemical potentiation” of transmitter release. Proc. R. Soc. London B. Biol. Sci. 205:369–378.

    Google Scholar 

  13. Peterson, C., and Gibson, G. E. 1982. 3,4-diaminopyridine alters acetylcholine metabolism and behavior during hypoxia. J. Pharmacol. Exp. Ther. 222:576–582.

    PubMed  Google Scholar 

  14. Tapia, R., and Sitges, M. 1982. Effect of 4-aminopyridine on transmitter release in synaptosomes. Brain Res. 250:291–299.

    PubMed  Google Scholar 

  15. Itoh, T., and Quastel, J. H. 1970. Acetoacetate, metabolism in infant and adult rat brain in vitro. Biochem. J. 116:641–655.

    PubMed  Google Scholar 

  16. Lowry, O. H., and Passonneau, J. V. A Flexible System of Enzymatic Analysis, Academic Press, New York, 1972.

    Google Scholar 

  17. Freeman, J., Choi, R., and Jenden, D. J. 1975. Plasma choline: its turnover and exchange with brain choline. J. Neurochem. 24:729–734.

    PubMed  Google Scholar 

  18. Gornall, A. G., Bardawill, C. J., and Davis, M. 1949. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1778:751–766.

    Google Scholar 

  19. Steele, R. G. D., and Torrie, J. H. 1960. Principles and Procedurs of Statistics. McGraw-Hill, New York.

    Google Scholar 

  20. Winer, B. J. 1971. Statistical Principles of Experimental Designs, McGraw-Hill, New York.

    Google Scholar 

  21. Johnston, M. V. 1983. Neurotransmitter alterations in a model of perinatal hypoxic-ischemic brain injury. Annals Neurol. 13:511–518.

    Google Scholar 

  22. Francis, A., and Pulsinelli, W. 1982. The response of GABAergic and cholinergic neurons to transient cerebral ischemia. Brain Res. 243:271–278.

    PubMed  Google Scholar 

  23. Francis, A., and Pulsinelli, W. 1983. Increased binding of [3H]GABA to striatal membranes following ischemia. J. Neurochem. 40:1497–1499.

    PubMed  Google Scholar 

  24. Vulto, A. G., Sharp, T., and Ungerstedt, U. 1985. Rapid post-mortal increase in extracellular concentration of dopamine in the rat as assessed by intra-cranial dialysis. Soc. Neurosci. Abstr. 11:353.7.

    Google Scholar 

  25. Clemens, J. A., Phebus L. A., Fuller, R. W., and Perry, K. W. 1984. Brain anoxia or breakdown of membrane ionic gradient releases neuronal stores of dopamine in the rat. Soc. Neurosci. Abstr. 10:277.6.

    Google Scholar 

  26. Weinberger, J., and Cohen, G. 1982. The differential effect of ischemia on the active uptake of dopamine, gamma-aminobutyric acid, and glutamate by brain synaptosomes. J. Neurochem. 38:963–968.

    PubMed  Google Scholar 

  27. Weinberger, J., and Cohen, G. 1983. Nerve terminal damage in cerebral ischemia: greater susceptibility of catecholamine nerve terminals relative to serotonin nerve terminals. Stroke 14:986–989.

    PubMed  Google Scholar 

  28. Freeman, G. B., Nielsen, P., and Gibson, G. E. 1986. Monoamine neurotransmitter metabolism and locomotor activity during chemical hypoxia. J. Neurochem. 46:733–738.

    PubMed  Google Scholar 

  29. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. 1984. Elevation of extracellular concentrations of glutamate and aspartate in rat hippocompus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.

    PubMed  Google Scholar 

  30. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. 1984. Excitatory amino acids and ischemic brain damage. Acta. Neurol. Scand. 69:336.

    Google Scholar 

  31. Bosley, T. M., Woodhams, P. L., Gordon, R. D., and Balazs, R. 1983. Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro. J. Neurochem. 40:189–201.

    PubMed  Google Scholar 

  32. Drejer, J., Benveniste, H., Diemer, N. H., and Schousboe, A. 1985. Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J. Neurochem. 45:145–151.

    PubMed  Google Scholar 

  33. Arnfred, T., and Hertz, L. 1971. Effects of potassium and glutamate on brain cortex slices: uptake and release of glutamic and other amino acids. J. Neurochem. 18:259–265.

    PubMed  Google Scholar 

  34. Mykytyn, V., and Gibson, G. E. 1985. In vitro anoxia selectively damages striatal and hippocampal acetylcholine and carbon dioxide production. Soc. Neurosci. Abstr. 11: 261.

    Google Scholar 

  35. Griffiths, S. T., Evans, M. C., and Meldrum, B. S. 1983. Intracellular calcium accumulation in rat hippocampus during seizures induced by bicuculline orl-allylglycine. Neurosci. 10:385–395.

    Google Scholar 

  36. Simon, R. P., Griffiths, T., Evans, M. C., Swan, J. H., and Meldrum, B. S. 1984a. Calcium overload in selectively vulnerrable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J. Cereb. Blood Flow Metab. 4:350–361.

    PubMed  Google Scholar 

  37. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. 1984b. Blockade of n-methyl-d-aspartate receptors may protect against ischemic-damage in the brain. Science 226:850–852.

    PubMed  Google Scholar 

  38. Rothman, S. M., and Olney, J. W. 1986. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19:105–111.

    PubMed  Google Scholar 

  39. Weinberger, J., Nieves-Rosa, J., and Cohen, G. 1985. Nerve terminal damage in cerebral ischemia: protective effect of alpha-methyl-para-tyrosine. Stroke 16:864–870.

    PubMed  Google Scholar 

  40. Globus, M. Y.-T., Ginsberg, M. D., Busto, R., Harik, S. I., and Dietrich, W. D. 1986. The relationship between striatal dopamine activity, glucose metabolism and blood flow following transient forebrain ischemia in the rat. Soc. Neurosci. Abstr. 340.11.

  41. Rowlands, G. J., and Roberts, P. J. 1980. Specific calcium-dependent release of endogenous glutamate from rat striatum is reduced by destruction of the cortico-striatal tract. Exp. Brain Res. 39:239–240.

    PubMed  Google Scholar 

  42. Wieloch, T., Engelsen, B., Westerberg, E., and Auer, R. 1985. Lesions of the glutamatergic cortico-striatal projections in the rat ameliorate hypoglycemic brain, damage in the striatum. Neurosci. Lett. 58:25–30.

    PubMed  Google Scholar 

  43. Wieloch, T. 1985. Hypoglycemia-induced neuronal damage prevented by an n-methyl-d-aspartate antagonist. Science 230:681–683.

    PubMed  Google Scholar 

  44. Rothman, S. 1984. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J. Neurosci. 4:1884–1891.

    PubMed  Google Scholar 

  45. Alberch, J., Marsal, J., and Solsona, C. 1985. Modulation of the endogenous acetylcholine release from rat striatal slices. Brain Res. 346:353–356.

    PubMed  Google Scholar 

  46. Baud, P., Arbilla, S., and Langer, S. Z. 1985. Inhibition of the electrically evoked release of [3H]acetylcholine in rat striatal slices: an experimental model for drugs that enhance dopaminergic neurotransmission. J. Neurochem. 44:331–337.

    PubMed  Google Scholar 

  47. Scatton, B. 1982. Effects of dopamine agonists and neuroleptic agents on striatal acetylcholine transmission in the rat: evidence against dopamine receptor multiplicity. J. Pharmacol. Exp. Ther. 220:197–202.

    PubMed  Google Scholar 

  48. Lehmann, J., Smith, R. V., and Langer, S. Z. 1983. Stereoisomers of apomorphine differ in affinity and intrinsic activity at presynaptic dopamine receptors modulating [3H]dopamine and [3H]acetylcholine release in slices of cat caudate. Eur. J. Pharmacol. 88:81–88.

    PubMed  Google Scholar 

  49. Arbilla, S., Bianchetti, G., Galzin, A. M., Langer, S. Z., Morselli, P. L., and Nowak, J. Z. 1983. Chronic haloperidol produces supersensitivity of dopamine receptors modulating3H-DA but not3H-ACh release in the rabbit caudate. Br. J. Pharmacol. 78:16 p.

    Google Scholar 

  50. Nielsen, P. E., and Gibson, G. E. 1986. Mitochondrial and plasma membrane potentials during anoxia and normoxia. Soc. Neurosci. Abstr. 380.9.

  51. Nicholls, D. G., and Akerman, K. E. O. 1982. Mitochondrial calcium uptake. Biochem. Biophys. Acta. 683:57–88.

    PubMed  Google Scholar 

  52. Peterson, C., Nicholls, D. G., and Gibson, G. E. 1985. Subsynaptosomal calcium distribution during hypoxia and 3,4-diaminopyridine treatment. J. Neurochem. 45:1779–1790.

    PubMed  Google Scholar 

  53. Nordstrom, O., Braesch Andersen, S., and Bartfai, T. 1986. Dopamine release is enhanced while acetylcholine release is inhibited by nimodipine (Bay e 9736). Acta. Physiol. Scand. 126:115–120.

    PubMed  Google Scholar 

  54. Vizi, E. S., Van Dijk, J., Foldes, F. F. 1977. Effect of 4-aminopyridine on acetylcholine release. J. Neural. Transm. 41:265–274.

    PubMed  Google Scholar 

  55. Romero, P. J., and Whittman, R. 1971. The control by internal calcium of membrane permeability to sodium and potassium. J. Physiol. (Lond.) 214:481–507.

    Google Scholar 

  56. Meech, R. W. 1978. Calcium dependent potassium activation in nervous tissues. Ann. Rev. Biophys. Bioenerg. 7:1–18.

    Google Scholar 

  57. Poli, A., Contestabile, A., Migani, P., Rossi, L., Rondelli, C., virgilli, M., Bissoli, R., and Barnabei, O. 1985. Kainic acid differentially affects the synaptosomal release of endogenous and exogenous amino acid neurotransmitters. J. Neurochem. 45:1677–1686.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, G.B., Mykytyn, V. & Gibson, G.E. Differential alteration of dopamine, acetylcholine, and glutamate release during anoxia and/or 3,4-diaminopyridine treatment. Neurochem Res 12, 1019–1027 (1987). https://doi.org/10.1007/BF00970931

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00970931

Key Words

Navigation