Skip to main content
Log in

Estimation of respiratory volumes from the photoplethysmographic signal. Part I: experimental results

  • Photoplethysmography
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

To evaluate the possibility of respiratory-volume measurement using photoplethysmography (PPG), PPG signals from 16 normal volunteers are collected, and the respiratory-induced intensity variations (RIIV) are digitally extracted. The RIIV signals are studied while reepiratory volume is varied. Furthermore, respiratory rate, body posture and type of respiration are varied. A Fleisch pneumotachograph is used as the inspired volume reference. The RIIV and pneumotachography signals are compared, and a statisical analysis is performed (linear regression and t-tests). The key idea is that the amplitude of the RIIV signal is related to the respiratory volume. The conclusion from the measurements is that there exists a relationship between the amplitude of the RIIV signal and the respiratory volume (R=0.842, s=0.428, p<0.005). Absolute measurements of the respiratory volume are not possible from the RIIV signal with the present set-up. The RIIV signal also seems to be affected by respiratory rate and type. More knowledge about respiratory parameters and improved sensor and filter design are required to make absolute measurements of volumes possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, A. K., Harness, J. B., andMearns, A. J. (1982): ‘Respiratory control of heart rate’,Eur. J. Appl. Physiol.,50, pp. 95–104

    Article  Google Scholar 

  • Allison, R. D., Holmes, E. L., andNyboer, J. (1964): ‘Volumetric dynamics of respiration as measured by electrical impedance plethysmography’,J. Appl. Phys.,19, pp. 166–173

    Google Scholar 

  • Ashutosh, K., Gilbert, R., Auchincloss, J. H., Erlebacher, J., andPeppi, D. (1974): ‘Impedance pneumograph and magnetometer methods for monitoring tidal volume’,J. Appl. Phys.,37, pp. 964–966

    Google Scholar 

  • Brecher, G. A. (1956): ‘Venous return’ (Grune & Stratton, New York)

    Google Scholar 

  • Challoner, A. V. J. (1979): ‘Photoelectric plethysmography for estimating cutaneous blood flow’in Rolfe, P. (Ed.): ‘Non-invasive physiological measurements’ (Academic Press, London) pp. 125–151

    Google Scholar 

  • Cyna, A. M., Kulkarni, V., Tunstall, M. E., Hutchinson, J. M. S., andMallard, J. R. (1991): ‘Aura: a new respirtory monitoring and apnoea alarm for spontaneously breathing patients’,Br. J. Anaesth.,67, pp. 341–345

    Article  Google Scholar 

  • Davis, D. L., andBaker, C. N. (1969): ‘Comparison of changes in blood volume and opacity in dog digital pad and tongue’,J. Appl. Physiol.,27, pp. 613–618

    Google Scholar 

  • Dorlas, J. C., andNijboer, J. A. (1985): ‘Photo-electric plethysmography as a monitoring device in anaesthesia’,Br. J. Anaesth.,57, pp. 524–530

    Article  Google Scholar 

  • Eldrup-Jorgensen, S., Schwartz, S. I., andWallace, J. D. (1966): ‘A method for clinical evaluation of peripheral circulation: Photoelectric hemodensitometry’,Surgery,59, pp. 505–513

    Google Scholar 

  • Elings, H. S. (1959): ‘Fotoelektrische plethysmografie met behulp van diffuus gereflekteered licht’, Thesis, Groningen University, The Netherlands

    Google Scholar 

  • Foster, A. D., Neumann, C., andRovenstine, E. A. (1945): ‘Peripheral circulation during anaesthesia, shock and haemorrhage: the digital plethysmograph as a clinical guide’,Anaesthesiology,6, pp. 246–257

    Article  Google Scholar 

  • Hamilton, L. H., Beard, J. D., Carmean, R. E. andKory, R. C. (1967): ‘An electrical impedance ventilometer to quantitate tidal volume and ventilation’,Med. Res. Eng.,6, pp. 11–16

    Google Scholar 

  • Henneberg, S., Hök, B., Wiklund, L., andSjödin, G. (1992): ‘Remote auscultatory patient monitoring during magnetic resonance imaging’,J. Clin. Mon.,8, pp. 37–43

    Article  Google Scholar 

  • Hering, E. (1869): ‘Über den Einfluss der Atmung auf den Kreislauf’,Sber. Akad. Wiss. Wien,60, p. 829

    Google Scholar 

  • Hertzman, A. B., andSpealman, C. R. (1937): ‘Photoelectric plethysmography of the fingers and toes in man’,Proc. Soc. Exp. Biol. Med.,37, pp. 529–534

    Google Scholar 

  • Hök, B. (1991): ‘Microphone design for bio-acoustic signals with suppression of noise and artifacts’,Sens. Actuators A,25–27, pp. 527–533

    Article  Google Scholar 

  • Hök, B., Wiklund, L., andHenneberg, S. (1993): ‘A new respiratory rate monitor: Development and initial clinical experience’,Int. J. Clin. Monit. Comp.,10, pp. 97–103

    Google Scholar 

  • Johansson, A. andÖberg, P. Å. (1996): ‘Uppskattning av andningsvolym med fotopletysmograf’ National medical convent, Stockholm, Abstract, p. 276 (in Swedish)

  • Johansson, A., andÖberg, P. Å. (1998): ‘Estimation of respiratory-volumes from the photoplethysmographic signal II: A model study’,Med. Biol. Eng. Comput.,37, 00–00.

    Google Scholar 

  • Lentz, G., andHeipertz, W. (1991): ‘Capnometry for continous postoperative monitoring of nonintubated, spontaneously breathing patients’,J. Clin. Mon.,7, pp. 245–248

    Article  Google Scholar 

  • Lindberg, L.-G., Ugnell, H., andÖberg, P. Å. (1992): ‘Monitoring of respiratory and heart rates using a fibre-optic sensor’,Med. Biol. Eng. Comput.,30, pp. 533–537

    Article  Google Scholar 

  • Mayer, S. (1876): ‘Über spontane Blutdruckschwankungen’,Sber. Akad. Wiss. Wien,74, p. 281

    Google Scholar 

  • Penaz, J. (1978): ‘Mayer waves: history and methodology’,Automedica,2, pp. 135–141

    Google Scholar 

  • Roy, J., McNulty, S., andTorjman, M. (1991): ‘An improved nasal prong appratus for end-tidal carbon dioxide monitoring in awake, sedated patients’,J. Clin. Mon.,7, pp. 249–252

    Article  Google Scholar 

  • Sara, C. A., andShanks, C. A. (1978): ‘The peripheral pulse monitor—a review of electrical plethysmography’,Anaesth. Intens. Care,6, pp. 226–233

    Google Scholar 

  • Sheperd, J. T., andVanhoutte, P. M. (1975): ‘Veins and their control’ (W. B. Saunders Company Ltd, London) pp. 134–179, pp. 190–209

    Google Scholar 

  • Sullivan, W. J., Peters, G. M., andEnright, P. L. (1984): ‘Pneumotachographs: Theory and clinical application’,Respiratory Care,29, pp. 736–749

    Google Scholar 

  • Traube, L. (1865): ‘Über periodische Tätigkeitsänderungen des vasomotorischen und Hemmungs Nervenzentrums’,Cbl. Med. Wiss.,56, p. 880

    Google Scholar 

  • Ugnell, H. (1995): ‘Photoplethysmographic heart and respiratory rate monitoring’, Thesis 386, Department of Biomedical Engineering, Linköping University, Linköping, Sweden

    Google Scholar 

  • Vegfors, M., Ugnell, H., Hök, B., Öberg, P. Å., andLennmarken, C. (1993): ‘Experimental evaluation of two new sensors for respiratory rate monitoring’,Physiol. Meas.,14, pp. 171–181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, A., Öberg, P.Å. Estimation of respiratory volumes from the photoplethysmographic signal. Part I: experimental results. Med. Biol. Eng. Comput. 37, 42–47 (1999). https://doi.org/10.1007/BF02513264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513264

Keywords

Navigation