Skip to main content

Advertisement

Log in

Calcitonin (but not calcitonin gene-related peptide) increases mouse bone cell proliferation in a dose-dependent manner, and increases mouse bone formation, alone and in combination with fluoride

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Previousin vitro studies have shown that salmon calcitonin had direct effects to increase parameters associated with embryonic chicken bone formation and to increase mouse and chicken osteoblast-line cell proliferation. The current studies demonstrate increased cell proliferation (i.e., [3H]-thymidine incorporation into DNA and tetrazolium salt reduction/deposition) in the osteoblastic murine cell line MC-3T3-E1 in response to salmon calcitonin (P<0.005) and to human calcitonin (P<0.005), but not to human calcitonin gene-related peptide. The current studies also show that salmon calcitonin increased several indices of murine bone formation. We found that 72 hours of exposure to salmon calcitonin [at 5 mU/ml—about 0.37 nM; mU/ml = milliunits of calcitonin activity/ml incubation medium (at 4,000 U/mg protein)] increased net45Ca deposition (121% of control,P<0.05), net [3H]-proline incorporation 149% of control,P<0.001), and alkaline phosphatase activity (146% of control,P<0.01), in neonatal mouse half-calvaria. The calcitonin-dependent increase in alkaline phosphatase activity was not affected by co-incubation with 1 nM parathyroid hormone. Co-incubation with fluoride (which also increased net [3H]-proline incorporation and alkaline phosphatase activity in neonatal mouse half-calvaria,P<0.05, for each) enhanced the osteogenic response to low-dose calcitonin, (i.e., co-incubation with fluoride shifted the biphasic calcitonin dose-response curve to a range of lower calcitonin concentrations). The calcitonin-fluoride combinations had proportional effects on net [3H]-proline incorporation and alkaline phosphatase in the treated mouse calvaria (r=0.78,P<0.005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman J, Raisz LG (1965) Thyrocalcitonin, inhibitor of bone resorption in tissue culture. Science 150:1465–1467

    Article  PubMed  CAS  Google Scholar 

  2. Baylink DJ, Morey E, Rich C (1969) Effect of calcitonin on the rates of bone formation and resorption in the rat. Endocrinology 84:261–269

    PubMed  CAS  Google Scholar 

  3. MacIntyre I, Evans IMA, Hobitz HHG, Joplin GF, Stevenson JC (1980) Chemistry, physiology and therapeutic applications of calcitonin. Arthritis Rheum 23:1139–1147

    PubMed  CAS  Google Scholar 

  4. Austin LA, Health H III (1981) Calcitonin, physiology and pathophysiology. N Engl J Med 304:269–278

    Article  PubMed  CAS  Google Scholar 

  5. Singer FR, Melvin KEW, Mills BG (1970) Acute effects of calcitonin on osteoclasts in man. Clin Endocrinol 5:333S-340S

    Google Scholar 

  6. Holtrop ME, Raisz LG, Simmons HA (1974) The effects of parathyroid hormone, colchicine and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol 60:346–365

    Article  PubMed  CAS  Google Scholar 

  7. Chambers TJ, Moore A (1983) The sensitivity of isolated osteoclasts to morphological transformation by calcitonin. J Clin Endocrinol Metab 57:819–825

    PubMed  CAS  Google Scholar 

  8. Hedlund T, Hulth A, Johnell O (1983) Early effects of parathyroid hormone and calcitonin on the number of osteoclasts and on serum calcium in rats. Acta Orthop Scand 54:802–804

    Article  PubMed  CAS  Google Scholar 

  9. Arnett TR, Dempster DW (1987) A comparative study of disaggregated chick and rat osteoclasts in vitro: effects of calcitonin and prostaglandins. Endocrinology 120:602–608

    PubMed  CAS  Google Scholar 

  10. Nicholson GC, Moseley JM, Sexton PM, Mendelsohn FAO, Martin TJ (1986) Abundant calcitonin receptors in isolated rat osteoclasts. J Clin Invest 78:355–360

    PubMed  CAS  Google Scholar 

  11. Marx SJ, Aurbach GD, Gavin JR, Buell DV (1974) Calcitonin receptors on cultured human lymphocytes. J Biol Chem 249:6812–6816

    PubMed  CAS  Google Scholar 

  12. Moran J, Hunziker W, Fisher JA (1978) Calcitonin and calcium ionophores; cAMP responses in cells of a human lymphoid line. Proc of the National Academy of Sciences, USA 75:3984–3987

    Article  CAS  Google Scholar 

  13. Farley JR, Baylink DJ (1988) In vitro evidence that local and systemic skeletal effectors can regulate3[H]-thymidine incorporation in chick calvarial cell cultures and modulate the stimulatory action(s) of embryonic chick bone extract. Calcif Tissue Int 42:23–33

    Article  PubMed  CAS  Google Scholar 

  14. Farley JR, Tarbaux NM, Hall SL, Linkhart TA, Baylink DJ (1988) The anti-bone resorptive agent, calcitonin, also acts in vitro to directly increase bone formation and bone cell proliferation. Endocrinology 123:159–167

    Article  PubMed  CAS  Google Scholar 

  15. Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calviria. J Biol Chem 96:191–196

    CAS  Google Scholar 

  16. Puzas JE, Drivdahl RH, Howard GA, Baylink DJ (1981) Endogenous inhibitor of bone cell proliferation. Proc Soc Exp Biol Med 166:113–122

    PubMed  CAS  Google Scholar 

  17. Farley JR, Tarbaux NM, Murphy LA, Masuda T, Baylink DJ (1987) In vitro evidence that bone formation may be coupled to resorption by release of mitogens from resorbing bone. Metabolism 36:314–321

    Article  PubMed  CAS  Google Scholar 

  18. Gospodarowicz D, Bialecki H, Greenburg G (1978) Purification of the fibroblast growth factor activity from bovine serum. J Biol Chem 253:3736–3741

    PubMed  CAS  Google Scholar 

  19. Mosmann T (1983) Rapid colorometric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  20. Denizot F, Lang R (1986) Rapid colorometric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  PubMed  CAS  Google Scholar 

  21. Charmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-base semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res 47:943–946

    Google Scholar 

  22. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram amounts of protein, utilizing the principle of protein-dye binding. Anal Biochem 72:248–255

    Article  PubMed  CAS  Google Scholar 

  23. Farley JR, Baylink DJ (1986) Skeletal alkaline phosphatase activity as a bone formation index in vitro. Metabolism 35:563–571

    Article  PubMed  CAS  Google Scholar 

  24. Farley JR, Wergedal J, Baylink DJ (1983) Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science 222:330–332

    Article  PubMed  CAS  Google Scholar 

  25. Burch WM (1984) Calcitonin stimulates growth and maturation of embryonic chick pelvic cartilage in vitro. Endocrinology 114:1196–1202

    PubMed  CAS  Google Scholar 

  26. Kawashima K, Iwata S, Endo H (1980) Growth stimulative effect of PTH, calcitonin and N6O2′-dibutyryl cAMP on chick embryonic cartilage cultivated in a chemically defined medium. Endocrinol Jpn 27:349–356

    PubMed  CAS  Google Scholar 

  27. Krane SM, Harris ED, Singer FR, Potts JT (1973) Acute effects of calcitonin on bone formation in man. Metabolism 22:51–58

    Article  PubMed  CAS  Google Scholar 

  28. Weiss RE, Singer FS, Gorn AH, Hofer DP, Nimni ME (1981) Calcitonin stimulates bone formation when administered prior to initiation of osteogenesis. J Clin Invest 68:815–818

    Article  PubMed  CAS  Google Scholar 

  29. Austin LA, Heath H, Go VLW (1978) Regulation of calcitonin secretion in normal man by changes in serum Ca within the physiologic range. J Clin Invest 64:1721–1724

    Google Scholar 

  30. Cooper CW, Bolman RM, Linehan WM, Wells SA Jr (1978) Interrelationship between calcium, calcemic hormones and gastrointestinal hormones. Recent Prog Horm Res 34:259–283

    PubMed  CAS  Google Scholar 

  31. Parthemore JG, Deftos LJ (1978) Calcitonin secretion in normal human subjects. J Clin Endocronil Metab 47:184–188

    Article  CAS  Google Scholar 

  32. Stevenson JC (1980) The structure and function of calcitonin. J Invest Cell Pathol 3:187–193

    CAS  Google Scholar 

  33. Ardaillou R (1982) Endocrinology of renal calcium and phosphate homeostasis. In: Parsons JA (ed) The endocrinology of Ca metabolism. Raven Press, New York, pp 41–85

    Google Scholar 

  34. Talmage RV, Grubb SA, Norimatsu H, VanderWiel GJ (1980) Evidence for an important physiological role for calcitonin. Proc Natl Acad Sci USA 77:609–613

    Article  PubMed  CAS  Google Scholar 

  35. Gruber H, Ivey J, Thompson E, Chesnut C, Baylink DJ (1986) Osteoblast and osteoclast cell number and cell activity in post-menopausal osteoporosis. Min Electrolyte Metab 12:246–254

    CAS  Google Scholar 

  36. Inaba M, Morii H, Nishizawa Y, Miki T, Yukioka M, Morisawa S, Inoue A (1986) Calcitonin-induced phosphorylation of rat liver cytosolic proteins. J Biochem 100:591–595

    PubMed  CAS  Google Scholar 

  37. Marx SJ, Woodard CJ, Aurbach GD (1972) Calcitonin receptors of kidney and bone. Science 178:999–1001

    Article  PubMed  CAS  Google Scholar 

  38. Rizzo AJ, Goltzman D (1981) Calcitonin receptors in the central nervous system of the rat. Endocrinology 108:1672–1677

    Article  PubMed  CAS  Google Scholar 

  39. Patel J, Fabbri A, Pert C, Gnessi L, Fraioli F, McDevitt R (1986) Calcitonin inhibits the phosphorylation of various proteins in rat brain synaptic membranes. Biochem Biophys Res Commun 130:669–676

    Article  Google Scholar 

  40. Arlot-Bonnemains Y, Fouchereau-Peron M, Moukhtan, MS, Milhaud G (1983) Characterization of target organs for calcitonin in lower and higher vertebrates. Comp Biochem Physiol 76A:377–380

    Article  CAS  Google Scholar 

  41. Findlay DM, Martin TJ (1986) Kinetics of calcitonin receptor internalization in lung cancer (BEN) and osteogenic sarcoma (UMR 106-06) cells. J Bone Min Res 1:277–283

    Article  CAS  Google Scholar 

  42. Forrest SM, Ng KW, FIndlay DM, Michelangeli VP, Livesey SA, Partridge NC, Zajac JD, Martin TJ (1985) Characterization of an osteoblast-like clonal cell line which responds to both PTH and calcitonin. Calcif Tissue Int 37:51–56

    PubMed  CAS  Google Scholar 

  43. Eilon G, Perkins J, Viola MV (1983) Characteristics of a calcitonin-responsive cell line derived from a human osteosarcoma. Cancer Res 43:3763–3769

    PubMed  CAS  Google Scholar 

  44. Upchurch KS, Parker LM, Scully RE, Krane SM (1986) Differential cyclic AMP responses to calcitonin among human ovarian carcinoma cell lines: a calcitonin-responsive line derived from a rare tumor type. J Bone Min Res 1:299–304

    CAS  Google Scholar 

  45. Riggs BL, Seeman E, Hodgson SF, Taves DR, O'Fallon WM (1982) Effect of the fluoride/calcium regimen on vertebral fracture occurrence in post-menopausal osteoporosis. N Engl J Med 306:446–450

    Article  PubMed  CAS  Google Scholar 

  46. Briancon D, Meunier PJ (1981) Treatment of osteoporosis with fluoride, calcium and vitamin D. Orthop Clin North Am 12:629–648

    PubMed  CAS  Google Scholar 

  47. Farley SM, Wergedal J, Smith L, Lundy M, Farley J, Baylink DJ (1987) Fluoride therapy for osteoporosis: characterization of the skeletal response by serial measurements of serum alkaline phosphatase activity. Metabolism 36:589–597

    Google Scholar 

  48. Gruber HE, Ivey J, Baylink DJ, Matthews M, Nelp WB, Sisom K, Chesnut CH III (1984) Long-term calcitonin therapy in postmenopausal osteoporosis. Metabolism 33:295–303

    Article  PubMed  CAS  Google Scholar 

  49. Mazzuoli GF, Passeri M, Gennari C, Minisola S, Antonelli R, Valtorta C, Palummeri E, Cervellin GF, Gonnelli S, Francini G (1985) Calcitonin 1984. Elsevier Science Publishers, Excerpta Medica, pp 129–136

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farley, J.R., Hall, S.L. & Tarbaux, N.M. Calcitonin (but not calcitonin gene-related peptide) increases mouse bone cell proliferation in a dose-dependent manner, and increases mouse bone formation, alone and in combination with fluoride. Calcif Tissue Int 45, 214–221 (1989). https://doi.org/10.1007/BF02556040

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556040

Key words

Navigation