Skip to main content
Log in

Yield of fluorescence from indocyanine green in plasma and flowing blood

  • Starkfest: Vision & Movement in Man and Machines
  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this work was to obtain more quantitative knowledge about the yield of fluorescence from retinal vessles during indocyanine green angiography (ICG). The yield of fluorescence from blood was investigated for various shear rates, concentrations of ICG, and layer thicknesses. Measurements were performedin vitro on samples of human blood in a cone-plate shear chamber using frontal illumination as in scanning laser angiography. In blood and in plasma, the yield of fluorescence of ICG increased with concentration up to 0.05 and 0.1 mg/ml, respectively. At higher concentrations, the yield decreased for all layer thicknesses. For increasing layer thicknesses, both in plasma and in blood, the yield of ICG fluorescence increased nonlinearly for concentrations higher than 0.012 mg/ml. Saturation occurred for layers thicker than 200 μm in combination with ICG concentrations of 0.4 mg/ml and higher. Application of shear rates within the physiological range of the microcirculation (88/sec and 528/sec) increased the yield of fluorescence from the blood sample compared with stasis. The high transparency of blood for the excitation and emission light of ICG that was demonstrated will lead to superposition of fluorescence from superficial and deeper layers. This superposition precludes quantitative indocyanine angiography of ocular vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bischoff, P. M., and R. W. Flower. Ten years experience with choroidal angiography using indocyanine green dye: a new routine examination or an epilogue?Doc. Ophthalmol. 60:235–291, 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Flower, R. W., and B. F. Hochheimer. Quantification of indicator dye concentration in ocular blood vessels.Exp. Eye Res. 25:103–111, 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Guyer, D. R., C. A. Puliafito, J. M. Mones, E. Friedman, W. Chang, and S. R. Verdooner. Digital indocyanine-green angiography in chorioretinal disorders.Ophthalmology 99: 287–291, 1992.

    PubMed  CAS  Google Scholar 

  4. Klose, H. J., E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schönbein. Microrheology and light transmission of blood. I. The photometric aspects of red cell aggregation and red cell orientation.Pflügers Arch. 333: 126–139, 1972.

    Article  PubMed  CAS  Google Scholar 

  5. Lipowsky, H. H., S. Usami, and S. Chien. In vivo measurements of “apparent viscosity” and microvessel hematocrit in the mesentery of the cat.Microvasc. Res. 19:297–319, 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Michoud, E., P. Carpentier, A. Franco, and M. Intaglietta. Two light attenuation models for automatic diameter measurement of blood vessels.Int. J. Microcirc. Clin. Exp. 12:157–171, 1993

    PubMed  CAS  Google Scholar 

  7. Moneta, G., M. Brulisauer, K. Jager, and A. Bollinger. Infrared fluorescence videomicroscopy of skin capillaries with indocyanine greenInt. J. Microcirc. Clin. Exp. 6:25–34, 1987.

    PubMed  CAS  Google Scholar 

  8. Romanchuk, K. G. Fluorescein. Physiochemical factors affecting its fluorescence.Surv. Ophthalmol. 26:269–283, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Schieder, A., and C. Schroedel. High resolution indocyanine green angiography with a scanning laser ophthalmoscope.Am. J. Ophthalmol. 108:458–459, 1989.

    Google Scholar 

  10. Schmid-Schönbein, H., E. Volger, and H. J. Klose. Microrheology and light transmission of blood. II. The photometric quantification of red cell aggregate formation and dispersion in flowPflügers Arch. 333:140–155, 1972.

    Article  PubMed  Google Scholar 

  11. Sdougos, H. P., S. R. Bussolari, and C. F. Dewey. Secondary flow and turbulence in a cone-and-plate device.J. Fluid Mech. 138:379–404, 1984.

    Article  Google Scholar 

  12. Slaaf, D. W., G. J. Tangelder, and R. S. Reneman. Physics of the microcirculation. In:The Physics of Heart and Circulation, edited by J. Strakee and N. Westerhof. Bristol: Institute of Physics Publishing, 1993, pp. 383–416.

    Google Scholar 

  13. Tangelder, G. J., D. W. Slaaf, and R. S. Reneman. Fluorescent labelling of blood platelets in vivo.Thrombosis Res. 28:803–820, 1982.

    Article  CAS  Google Scholar 

  14. Van den Biesen, P. R., F. H. Jongsma, G. J. Tangelder, and D. W. Slaaf. Shear rate and hematocrit dependence of fluorescence from retinal vessels in fluorescein angiography.Ann. Biomed. Eng. 22:456–463, 1994.

    Article  PubMed  Google Scholar 

  15. Wiederhielm, C. A., and L. Billig. Effects of erythrocyte orientation and concentration on light transmission through blood flowing through microscopic blood vessels. InHemorhology. Proceedings of the First International Conference, Reykjavic, 1966. New York: Pergamon Press, 1967, pp. 681–694.

    Google Scholar 

  16. Yannuzzi, L. A., J. S. Slakter, J. A. Sorenson, D. R. Guyer, and D. A. Orlock. Digital indocyanine green videoangiography and choroidal neovascularization.Retina 12: 191–223, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Biesen, P.R., Jongsma, F.H., Tangelder, G.J. et al. Yield of fluorescence from indocyanine green in plasma and flowing blood. Ann Biomed Eng 23, 475–481 (1995). https://doi.org/10.1007/BF02584447

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584447

Keywords

Navigation