Skip to main content

Advertisement

Log in

Diabetic Vasculopathy: Macro and Microvascular Injury

  • Wound Healing and Tissue Repair (C Yates and R Mota, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Diabetes is a common and prevalent medical condition as it affects many lives around the globe. Specifically, type-2 diabetes (T2D) is characterized by chronic systemic inflammation alongside hyperglycemia and insulin resistance in the body, which can result in atherosclerotic legion formation in the arteries and thus progression of related conditions called diabetic vasculopathies. T2D patients are especially at risk for vascular injury; adjunct in many of these patients, their cholesterol and triglyceride levels reach dangerously high levels and accumulate in the lumen of their vascular system.

Recent Findings

Microvascular and macrovascular vasculopathies as complications of diabetes can accentuate the onset of organ illnesses; thus, it is imperative that research efforts help identify more effective methods for prevention and diagnosis of early vascular injuries. Current research into vasculopathy identification/treatment will aid in the amelioration of diabetes-related symptoms and thus reduce the large number of deaths that this disease accounts annually.

Summary

This review aims to showcase the evolution and effects of diabetic vasculopathy from development to clinical disease as macrovascular and microvascular complications with a concerted reference to sex-specific disease progression as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.

  2. Schmidt AM. Highlighting diabetes mellitus: the epidemic continues. Arterioscler Thromb Vasc Biol. 2018;38(1):e1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: insights from yesterday, today, and future trends. Popul Health Manag. 2017;20(1):6–12.

    PubMed  PubMed Central  Google Scholar 

  4. Mihai B, Mihai C, Cijevschi-Prelipcean C, Lăcătuşu C. Rare types of diabetes mellitus. Rev Med Chir Soc Med Nat Iasi. 2012;116(3):700–7.

    CAS  PubMed  Google Scholar 

  5. Lee AK, et al. Number and characteristics of US adults meeting prediabetes criteria for diabetes prevention programs: NHANES 2007-2016. J Gen Intern Med. 2019.

  6. Greene J. Dividing diabetes by cluster instead of types. Manag Care. 2018;27(6):29–30.

    PubMed  Google Scholar 

  7. Rahman S, Rahman T, Ismail AA, Rashid AR. Diabetes-associated macrovasculopathy: pathophysiology and pathogenesis. Diabetes Obes Metab. 2007;9(6):767–80.

    CAS  PubMed  Google Scholar 

  8. • Lin PJ, Pope E, Zhou FL. Comorbidity type and health care costs in type 2 diabetes: a retrospective claims database analysis. Diabetes Ther. 2018;9(5):1907–18. Provides an insight into how efforts in care management for diabetic patients should focus to highest need patients using comorbidity classification.

    PubMed  PubMed Central  Google Scholar 

  9. Xu W, Tian M, Zhou Y. The relationship between insulin resistance, adiponectin and C-reactive protein and vascular endothelial injury in diabetic patients with coronary heart disease. Exp Ther Med. 2018;16(3):2022–6.

    PubMed  PubMed Central  Google Scholar 

  10. Thiruvoipati T, Kielhorn CE, Armstrong EJ. Peripheral artery disease in patients with diabetes: epidemiology, mechanisms, and outcomes. World J Diabetes. 2015;6(7):961–9.

    PubMed  PubMed Central  Google Scholar 

  11. Maranghi M, Pugliese F, Cianci R, Colotto M, Durante C, Anatra MG, et al. Atherosclerosis renal artery stenosis and in-stent restenosis in a diabetic patient: targeting on diabetic dyslipidemia is a key intervention. J Endocrinol Investig. 2010;33(4):284–5.

    PubMed  Google Scholar 

  12. Cooper ME, Bonnet F, Oldfield M, Jandeleit-Dahm K. Mechanisms of diabetic vasculopathy: an overview. Am J Hypertens. 2001;14(5 Pt 1):475–86.

    CAS  PubMed  Google Scholar 

  13. von der Thusen JH, et al. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype. Am J Pathol. 2011;178(2):924–34.

    PubMed  PubMed Central  Google Scholar 

  14. Sun J, Balu N, Hippe DS, Xue Y, Dong L, Zhao X, et al. Subclinical carotid atherosclerosis: short-term natural history of lipid-rich necrotic core--a multicenter study with MR imaging. Radiology. 2013;268(1):61–8.

    PubMed  Google Scholar 

  15. Oliveira-Santos M, Castelo-Branco M, Silva R, Gomes A, Chichorro N, Abrunhosa A, et al. Atherosclerotic plaque metabolism in high cardiovascular risk subjects - a subclinical atherosclerosis imaging study with (18)F-NaF PET-CT. Atherosclerosis. 2017;260:41–6.

    PubMed  Google Scholar 

  16. Bahnson ES, Kassam HA, Moyer TJ, Jiang W, Morgan CE, Vercammen JM, et al. Targeted nitric oxide delivery by supramolecular nanofibers for the prevention of restenosis after arterial injury. Antioxid Redox Signal. 2016;24(8):401–18.

    CAS  Google Scholar 

  17. Dixon DL, Pamulapati LG, Bucheit JD, Sisson EM, Smith SR, Kim CJ, et al. Recent updates on the use of PCSK9 inhibitors in patients with atherosclerotic cardiovascular disease. Curr Atheroscler Rep. 2019;21(5):16.

  18. Dudink E, Florijn B, Weijs B, Duijs J, Luermans J, Peeters F, et al. Vascular calcification and not arrhythmia in idiopathic atrial fibrillation associates with sex differences in diabetic microvascular injury miRNA profiles. Microrna. 2019;8(2):127–34.

    CAS  PubMed  Google Scholar 

  19. Wolstenhulme S, Davies AG, Keeble C, Moore S, Evans JA. Agreement between objective and subjective assessment of image quality in ultrasound abdominal aortic aneurism screening. Br J Radiol. 2015;88(1046):20140482.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Asfour V, Smythe E, Attia R. Vascular injury at laparoscopy: a guide to management. J Obstet Gynaecol. 2018;38(5):598–606.

    PubMed  Google Scholar 

  21. Bohlen HG. Mechanisms for early microvascular injury in obesity and type II diabetes. Curr Hypertens Rep. 2004;6(1):60–5.

    PubMed  Google Scholar 

  22. Murayama H, et al. Relationship of patient background with macro- and microvascular complications: a 2-year post-marketing surveillance of vildagliptin in nearly 20,000 Japanese diabetic patients. Expert Opin Pharmacother. 2019:1–11.

  23. Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports. 2014;24(2):e69–76.

    CAS  PubMed  Google Scholar 

  24. Kolos I, Troitskiy A, Balakhonova T, Shariya M, Skrypnik D, Tvorogova T, et al. Modern medical treatment with or without carotid endarterectomy for severe asymptomatic carotid atherosclerosis. J Vasc Surg. 2015;62(4):914–22.

    PubMed  Google Scholar 

  25. Dorenkamp M, Boldt J, Leber AW, Sohns C, Roser M, Boldt LH, et al. Cost-effectiveness of paclitaxel-coated balloon angioplasty in patients with drug-eluting stent restenosis. Clin Cardiol. 2013;36(7):407–13.

    PubMed  PubMed Central  Google Scholar 

  26. Zhu X, Xie H, Liang X, Li X, Duan J, Chen Y, et al. Bilayered nanoparticles with sequential release of VEGF gene and paclitaxel for restenosis inhibition in atherosclerosis. ACS Appl Mater Interfaces. 2017;9(33):27522–32.

    CAS  Google Scholar 

  27. Chou C, et al. Combination of vascular intervention surgery and free tissue transfer for critical diabetic limb salvage. Ann Plast Surg. 2016;77(Suppl 1):S16–21.

    CAS  PubMed  Google Scholar 

  28. McVicar CM, et al. Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. Diabetes. 2011;60(11):2995–3005.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh M, Williams BA, Gersh BJ, McClelland R, Ho KK, Willerson JT, et al. Geographical differences in the rates of angiographic restenosis and ischemia-driven target vessel revascularization after percutaneous coronary interventions: results from the Prevention of Restenosis with Tranilast and its Outcomes (PRESTO) Trial. J Am Coll Cardiol. 2006;47(1):34–9.

  30. Jadue TA, Gonzalez LR, Irarrazabal LLM. Meta-analysis of coronary artery bypass surgery compared to percutaneous transluminal angioplasty with stent in diabetic patients. Rev Med Chil. 2012;140(5):640–8.

    Google Scholar 

  31. Naito R, Miyauchi K, Konishi H, Tsuboi S, Ogita M, Dohi T, et al. Clinical outcomes in diabetic patients who underwent percutaneous coronary intervention during the plain old balloon angioplasty (POBA)-, bare metal stents (BMS)- and drug-eluting stents (DES)-eras from 1984 to 2010. Intern Med. 2017;56(1):1–9.

    PubMed  PubMed Central  Google Scholar 

  32. •• Avogaro A, Fadini GP. Microvascular complications in diabetes: a growing concern for cardiologists. Int J Cardiol. 2019;291:29. Gives a great perspective on the importance on subclinical microvascular complications in diabetic patients.

    PubMed  Google Scholar 

  33. Phillips JA 3rd. Dominant-negative diabetes insipidus and other endocrinopathies. J Clin Invest. 2003;112(11):1641–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wiggenhauser LM, Kroll J. Vascular damage in obesity and diabetes: highlighting links between endothelial dysfunction and metabolic disease in zebrafish and man. Curr Vasc Pharmacol. 2018.

  35. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–92.

    CAS  PubMed  Google Scholar 

  36. Adams A, Bojara W, Schunk K. Early diagnosis and treatment of coronary heart disease in asymptomatic subjects with advanced vascular atherosclerosis of the carotid artery (type III and IV b findings using ultrasound) and risk factors. Cardiol Res. 2018;9(1):22–7.

    PubMed  PubMed Central  Google Scholar 

  37. Mitchell CC, Korcarz CE, Tattersall MC, Gepner AD, Young RL, Post WS, et al. Carotid artery ultrasound texture, cardiovascular risk factors, and subclinical arterial disease: the multi-ethnic study of atherosclerosis (MESA). Br J Radiol. 2018;91(1084):20170637.

  38. • Polak JF, Szklo M, O’Leary DH. Carotid intima-media thickness score, positive coronary artery calcium score, and incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2017;6(1). Emphasizes the importance of intima-media thickness assessment in carotid arteries from ethnic populations.

  39. Choi SY, Lim SW, Salimi S, Yoo EJ, Lee-Kwon W, Lee HH, et al. Tonicity-responsive enhancer-binding protein mediates hyperglycemia-induced inflammation and vascular and renal injury. J Am Soc Nephrol. 2018;29(2):492–504.

    PubMed  PubMed Central  Google Scholar 

  40. Zhao Q, et al. Alleviation of hyperglycemia induced vascular endothelial injury by exenatide might be related to the reduction of nitrooxidative stress. Biomed Res Int. 2013;2013:843657.

    PubMed  PubMed Central  Google Scholar 

  41. Quincozes-Santos A, Bobermin LD, de Assis AM, Gonçalves CA, Souza DO. Fluctuations in glucose levels induce glial toxicity with glutamatergic, oxidative and inflammatory implications. Biochim Biophys Acta Mol basis Dis. 2017;1863(1):1–14.

    CAS  PubMed  Google Scholar 

  42. DeRubertis BG, et al. Reduced primary patency rate in diabetic patients after percutaneous intervention results from more frequent presentation with limb-threatening ischemia. J Vasc Surg. 2008;47(1):101–8.

    PubMed  Google Scholar 

  43. Jiang M, Zhang H, Zhai L, Ye B, Cheng Y, Zhai C. ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-beta1 pathway. Lipids Health Dis. 2017;16(1):216.

    PubMed  PubMed Central  Google Scholar 

  44. Bajaj HS, Ye C, Hanley AJ, Sermer M, Zinman B, Retnakaran R. Biomarkers of vascular injury and endothelial dysfunction after recent glucose intolerance in pregnancy. Diab Vasc Dis Res. 2018;15(5):449–57.

    CAS  PubMed  Google Scholar 

  45. Jia M, Ren D, Nie Y, Yang X. Beneficial effects of apple peel polyphenols on vascular endothelial dysfunction and liver injury in high choline-fed mice. Food Funct. 2017;8(3):1282–92.

    CAS  PubMed  Google Scholar 

  46. Hansson GK, Robertson AK, Soderberg-Naucler C. Inflammation and atherosclerosis. Annu Rev Pathol. 2006;1:297–329.

    CAS  PubMed  Google Scholar 

  47. Yang B, Zhu H, Zhang Y, Xu A. High-resolution magnetic resonance imaging confirmed atherosclerosis of an intracranial penetrating artery: a case report. J Stroke Cerebrovasc Dis. 2018;27(7):e121–4.

    PubMed  Google Scholar 

  48. Loso J, et al. Serum biomarkers of endothelial dysfunction in Fabry associated cardiomyopathy. Front Cardiovasc Med. 2018;5:108.

    PubMed  PubMed Central  Google Scholar 

  49. Wei L, et al. Development of an inflammation imaging tracer, (111)In-DOTA-DAPTA, targeting chemokine receptor CCR5 and preliminary evaluation in an ApoE(−/−) atherosclerosis mouse model. J Nucl Cardiol. 2018.

  50. Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial barrier and its abnormalities in cardiovascular disease. Front Physiol. 2015;6:365.

    PubMed  PubMed Central  Google Scholar 

  51. Bykov AT, et al. Early diagnostics, prophylaxis, and non-pharmacological treatment of the preclinical stages of atherosclerosis and arterial hypertension. Vopr Kurortol Fizioter Lech Fiz Kult. 2015;92(5):18–21.

    CAS  PubMed  Google Scholar 

  52. Paeschke S, et al. The role of iron and nerve inflammation in diabetes mellitus type 2-induced peripheral neuropathy. Neuroscience. 2019.

  53. Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med. 2000;191(1):189–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. • Meester EJ, et al. Imaging of atherosclerosis, targeting LFA-1 on inflammatory cells with (111)In-DANBIRT. J Nucl Cardiol. 2018. Insight on targeting the inflammatory process in preclinical atherosclerotic disease via molecular imaging in vivo.

  55. van den Oever IA, et al. Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediat Inflamm. 2010;2010:792393.

    Google Scholar 

  56. Paffett ML, Zychowski KE, Sheppard L, Robertson S, Weaver JM, Lucas SN, et al. Ozone inhalation impairs coronary artery dilation via intracellular oxidative stress: evidence for serum-borne factors as drivers of systemic toxicity. Toxicol Sci. 2015;146(2):244–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Clerkin KJ, Ali ZA, Mancini DM. New developments for the detection and treatment of cardiac vasculopathy. Curr Opin Cardiol. 2017.

  58. Menezes LJ, Kotze CW, Agu O, Richards T, Brookes J, Goh VJ, et al. Investigating vulnerable atheroma using combined (18)F-FDG PET/CT angiography of carotid plaque with immunohistochemical validation. J Nucl Med. 2011;52(11):1698–703.

    PubMed  Google Scholar 

  59. Pechlivani N, Ajjan RA. Thrombosis and vascular inflammation in diabetes: mechanisms and potential therapeutic targets. sFront Cardiovasc Med. 2018;5:1.

    Google Scholar 

  60. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management, and clinical considerations. Circulation. 2016;133(24):2459–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. •• Pletsch-Borba L, et al. Biomarkers of vascular injury in relation to myocardial infarction risk: a population-based study. Sci Rep. 2019;9(1):3004. Highlights the use of biomarkers assesment for risk between vascular injury and importantly CVD.

    PubMed  PubMed Central  Google Scholar 

  62. Krysiak R, Szkrobka W, Okopien B. Effect of metformin on hypothalamic-pituitary-thyroid axis activity in elderly antipsychotic-treated women with type 2 diabetes and subclinical hypothyroidism: a preliminary study. J Clin Pharmacol. 2018;58(5):586–92.

    CAS  PubMed  Google Scholar 

  63. Tirabassi G, Chelli FM, Ciommi M, Lenzi A, Balercia G. Influence of the hypothalamic-pituitary-adrenal axis dysregulation on the metabolic profile of patients affected by diabetes mellitus-associated late onset hypogonadism. Nutr Metab Cardiovasc Dis. 2016;26(1):53–9.

    CAS  PubMed  Google Scholar 

  64. Bayramci NS, et al. Investigation of glucocorticoid receptor and calpain-10 gene polymorphisms in Turkish patients with type 2 diabetes mellitus. Turk J Med Sci. 2017;47(5):1568–75.

    CAS  PubMed  Google Scholar 

  65. Khalil RA. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease. Biochem Pharmacol. 2013;86(12):1627–42.

    CAS  PubMed  Google Scholar 

  66. Ahmed MA, Hassanein KM. Effects of estrogen on hyperglycemia and liver dysfunction in diabetic male rats. Int J Physiol Pathophysiol Pharmacol. 2012;4(3):156–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Prospective Studies, C. and C. Asia Pacific Cohort Studies, Sex-specific relevance of diabetes to occlusive vascular and other mortality: a collaborative meta-analysis of individual data from 980 793 adults from 68 prospective studies. Lancet Diabetes Endocrinol. 2018;6(7):538–46.

  68. Zhang Z, Tremblay J, Raelson J, Sofer T, du L, Fang Q, et al. EPHA4 regulates vascular smooth muscle cell contractility and is a sex-specific hypertension risk gene in individuals with type 2 diabetes. J Hypertens. 2019;37(4):775–89.

    PubMed  Google Scholar 

  69. Pimenta DC, Prezoto BC, Konno K, Melo RL, Furtado MF, Camargo AC, et al. Mass spectrometric analysis of the individual variability of Bothrops jararaca venom peptide fraction. Evidence for sex-based variation among the bradykinin-potentiating peptides. Rapid Commun Mass Spectrom. 2007;21(6):1034–42.

    CAS  PubMed  Google Scholar 

  70. Weinberg J, Diniz CR, Mares-Guia M. Influence of sex and sexual hormones in the bradykinin-receptor interaction in the guinea pig ileum. Biochem Pharmacol. 1976;25(4):433–7.

    CAS  PubMed  Google Scholar 

  71. Dewitte A, Coquin J, Meyssignac B, Joannès-Boyau O, Fleureau C, Roze H, et al. Doppler resistive index to reflect regulation of renal vascular tone during sepsis and acute kidney injury. Crit Care. 2012;16(5):R165.

    PubMed  PubMed Central  Google Scholar 

  72. Klychnikova EV, Tazina EV, Smirnov SV, Spiridonova TG, Zhirkova EA, Borisov VS, et al. Correlation between biochemical parameters of oxidative stress, endogenous intoxication and regulation of vascular tone in patients with burn injury. Anesteziol Reanimatol. 2015;60(1):45–9.

  73. Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16(6):431.

    PubMed  Google Scholar 

  74. Shen J, et al. Protection against death and renal failure by renin-angiotensin system blockers in patients with diabetes and kidney disease. J Renin-Angiotensin-Aldosterone Syst. 2016;17(3).

  75. Wang D, Luo P, Wang Y, Li W, Wang C, Sun D, et al. Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism. Diabetes. 2013;62(5):1697–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hetterich H, Webber N, Willner M, Herzen J, Birnbacher L, Hipp A, et al. AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography. Eur Radiol. 2016;26(9):3223–33.

    PubMed  Google Scholar 

  77. Zoungas S, Woodward M, Li Q, Cooper ME, Hamet P, Harrap S, et al. Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia. 2014;57(12):2465–74.

    PubMed  Google Scholar 

  78. Gedebjerg A, Almdal TP, Berencsi K, Rungby J, Nielsen JS, Witte DR, et al. Prevalence of micro- and macrovascular diabetes complications at time of type 2 diabetes diagnosis and associated clinical characteristics: a cross-sectional baseline study of 6958 patients in the Danish DD2 cohort. J Diabetes Complicat. 2018;32(1):34–40.

    PubMed  Google Scholar 

  79. Triches C, Schaan BD, Gross JL, Azevedo MJ. Macrovascular diabetic complications: clinical characteristics, diagnosis and management. Arq Bras Endocrinol Metabol. 2009;53(6):698–708.

    PubMed  Google Scholar 

  80. Bosevski M. Carotid artery disease in diabetic patients. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2014;35(3):149–61.

    Google Scholar 

  81. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.

  82. Bashore TM, Balter S, Barac A, Byrne JG, Cavendish JJ, Chambers CE, et al. 2012 American College of Cardiology Foundation/Society for Cardiovascular Angiography and Interventions expert consensus document on cardiac catheterization laboratory standards update: a report of the American College of Cardiology Foundation Task Force on Expert Consensus documents developed in collaboration with the Society of Thoracic Surgeons and Society for Vascular Medicine. J Am Coll Cardiol. 2012;59(24):2221–305.

    PubMed  Google Scholar 

  83. Jiang Q, et al. Reduced facial swelling and incision numbness after Q-modified eversion carotid endarterectomy in patients with severe carotid stenosis. World Neurosurg. 2019.

  84. • Firnhaber JM, Powell CS. Lower extremity peripheral artery disease: diagnosis and treatment. Am Fam Physician. 2019;99(6):362–9. Concise and accurate review of lower extremity peripheral artery disease from lifestyle modification going through therapeutic and surgical approaches.

  85. Paraskevas KI, Koupidis SA, Tzovaras AA, Nikolaou A, Mikhailidis DP. Screening for peripheral artery disease in dialysis patients: an opportunity for early disease detection and timely initiation of appropriate therapeutic measures. Int Urol Nephrol. 2011;43(1):143–5.

    PubMed  Google Scholar 

  86. Tagawa S, et al. Determination of early and late endothelial progenitor cells in peripheral circulation and their clinical association with coronary artery disease. Int J Vasc Med. 2015;2015:674213.

    PubMed  PubMed Central  Google Scholar 

  87. Kim BG, Ko YG, Hong SJ, Ahn CM, Kim JS, Kim BK, et al. Impact of peripheral artery disease on early and late outcomes of transcatheter aortic valve implantation in patients with severe aortic valve stenosis. Int J Cardiol. 2018;255:206–11.

    PubMed  Google Scholar 

  88. Skorkowska-Telichowska K, et al. Insufficient modification of atherosclerosis risk factors in PAD patients. Adv Clin Exp Med. 2018;27(6):819–26.

    PubMed  Google Scholar 

  89. Parker CN, van Netten J, Parker TJ, Jia L, Corcoran H, Garrett M, et al. Differences between national and international guidelines for the management of diabetic foot disease. Diabetes Metab Res Rev. 2019;35(2):e3101.

    PubMed  Google Scholar 

  90. Cherviakov IV, Kha KN, Gavrilenko AV, Klimov AE. Differentiated approach to treatment of decompensated lower limb ischaemia with the use of the WIFI classification system. Angiol Sosud Khir. 2019;25(1):9–16.

    PubMed  Google Scholar 

  91. Vaquero Morillo F. The impact of peripheral arterial disease: a proposal for a new classification. Cir Esp. 2016;94(5):266–73.

    PubMed  Google Scholar 

  92. Hanrahan CJ, Lindley MD, Mueller M, Kim D, Sommers D, Morrell G, et al. Diagnostic accuracy of noncontrast MR angiography protocols at 3T for the detection and characterization of lower extremity peripheral arterial disease. J Vasc Interv Radiol. 2018;29(11):1585–94 e2.

    PubMed  Google Scholar 

  93. Behrendt CA, Rieß HC, Heidemann F, Diener H, Rohlffs F, Hohnhold R, et al. Radiation dosage for percutaneous PAD treatment is different in cardiovascular disciplines: results from an eleven year population based registry in the metropolitan area of Hamburg. Eur J Vasc Endovasc Surg. 2017;53(2):215–22.

    PubMed  Google Scholar 

  94. Sevestre MA, Larghero J, Castier Y, Nugent HM, Visonneau S, Alsac JM. Pilot safety study of perivascular injection of tissue-engineered allogeneic aortic endothelial cells in patients undergoing minimally invasive peripheral revascularization. J Vasc Surg. 2014;59(6):1597–606.

    PubMed  Google Scholar 

  95. Flugelman MY, Halak M, Yoffe B, Schneiderman J, Rubinstein C, Bloom AI, et al. Phase Ib safety, two-dose study of MultiGeneAngio in patients with chronic critical limb ischemia. Mol Ther. 2017;25(3):816–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hanhart J, Comaneshter DS, Vinker S. Mortality after a cerebrovascular event in age-related macular degeneration patients treated with bevacizumab ocular injections. Acta Ophthalmol. 2018;96(6):e732–9.

    CAS  PubMed  Google Scholar 

  97. Barra S, Providência R, Lourenço Gomes P, Silva J, Seca L, Nascimento J, et al. Prediction of cerebrovascular event risk following myocardial infarction. Rev Port Cardiol. 2011;30(7–8):655–63.

    Google Scholar 

  98. Di Minno MND, et al. Impact of cardiovascular and immunologic variables on subclinical carotid atherosclerosis in subjects with anti-phospholipid antibodies. Data Brief. 2018;19:1799–803.

    PubMed  PubMed Central  Google Scholar 

  99. Zhao FF, Gao HY, Gao Y, Zhao Z, Li J, Ning FB, et al. A correlational study on cerebral microbleeds and carotid atherosclerosis in patients with ischemic stroke. J Stroke Cerebrovasc Dis. 2018;27(8):2228–34.

    PubMed  Google Scholar 

  100. Tanaka A, Kawaguchi A, Oyama JI, Ishizu T, Ito H, Fukui J, et al. Differential effect of concomitant antidiabetic agents on carotid atherosclerosis: a subgroup analysis of the PROLOGUE study. Heart Vessel. 2019;34(2):375–84.

    PubMed  Google Scholar 

  101. Yao L, Folsom AR, Alonso A, Lutsey PL, Pankow JS, Guan W, et al. Association of carotid atherosclerosis and stiffness with abdominal aortic aneurysm: the atherosclerosis risk in communities (ARIC) study. Atherosclerosis. 2018;270:110–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen R, Ovbiagele B, Feng W. Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci. 2016;351(4):380–6.

    PubMed  PubMed Central  Google Scholar 

  103. Venketasubramanian N, Röther J, Bhatt DL, Pasquet B, Mas JL, Alberts MJ, et al. Two-year vascular event rates in patients with symptomatic cerebrovascular disease: the REACH registry. Cerebrovasc Dis. 2011;32(3):254–60.

    PubMed  Google Scholar 

  104. Saadatnia M, Sayed-Bonakdar Z, Mohammad-Sharifi G, Sarrami AH. Prevalence and prognosis of cerebrovascular accidents and its subtypes among patients with systemic lupus erythematosus in Isfahan, Iran: a hospital clinic-based study. Int J Prev Med. 2014;5(1):123–6.

    PubMed  PubMed Central  Google Scholar 

  105. Kumar A, al-Bader M, al-Thani H, el-Menyar A, al Suwaidi J, al-Zakwani I, et al. Multicenter cross-sectional study of asymptomatic peripheral arterial disease among patients with a single previous coronary or cerebrovascular event in the Arabian Gulf. Curr Med Res Opin. 2014;30(9):1725–32.

    PubMed  Google Scholar 

  106. Kurosaki Y, Yoshida K, Fukuda H, Handa A, Chin M, Yamagata S. Asymptomatic carotid T1-high-intense plaque as a risk factor for a subsequent cerebrovascular ischemic event. Cerebrovasc Dis. 2017;43(5–6):250–6.

    PubMed  Google Scholar 

  107. Ly H, Verma N, Wu F, Liu M, Saatman KE, Nelson PT, et al. Brain microvascular injury and white matter disease provoked by diabetes-associated hyperamylinemia. Ann Neurol. 2017;82(2):208–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tsukamoto Y, Nagata E, Fukuyama N, Itoh Y, Yuzawa H, Kohara S, et al. Cilostazol protects against microvascular brain injury in a rat model of type 2 diabetes. Neurosci Res. 2017;117:48–53.

    CAS  PubMed  Google Scholar 

  109. Sorrentino FS, et al. Diabetic retinopathy and endothelin system: microangiopathy versus endothelial dysfunction. Eye (Lond). 2018;32(7):1157–63.

    CAS  Google Scholar 

  110. Borroni RG, Grassi S, Concardi M, Agozzino M, Caspani C, Giordano C, et al. Involvement of dermal microvascular basement membrane in senile purpura: quantitative immunohistochemical study. J Eur Acad Dermatol Venereol. 2016;30(10):e63–5.

    PubMed  Google Scholar 

  111. Sava P, Cook IO, Mahal RS, Gonzalez AL. Human microvascular pericyte basement membrane remodeling regulates neutrophil recruitment. Microcirculation. 2015;22(1):54–67.

    CAS  PubMed  Google Scholar 

  112. Coughlan MT, Cooper ME, Forbes JM. Renal microvascular injury in diabetes: RAGE and redox signaling. Antioxid Redox Signal. 2007;9(3):331–42.

    CAS  PubMed  Google Scholar 

  113. Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J. 2016;16(2):e132–41.

    PubMed  PubMed Central  Google Scholar 

  114. Masarone M, Rosato V, Aglitti A, Bucci T, Caruso R, Salvatore T, et al. Liver biopsy in type 2 diabetes mellitus: steatohepatitis represents the sole feature of liver damage. PLoS One. 2017;12(6):e0178473.

    PubMed  PubMed Central  Google Scholar 

  115. Saxena A, Sachin K, Bhatia AK. System level meta-analysis of microarray datasets for elucidation of diabetes mellitus pathobiology. Curr Genomics. 2017;18(3):298–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Adeyemi DO, et al. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage. BMC Complement Altern Med. 2014;14:277.

    PubMed  PubMed Central  Google Scholar 

  117. Moon JS. Role of bilirubin in diabetic vascular complications: can bilirubin predict more than just liver disease? Diabetes Metab J. 2015;39(5):384–6.

    PubMed  PubMed Central  Google Scholar 

  118. Khimmaktong W, et al. Study of curcumin on microvasculature characteristic in diabetic rat’s liver as revealed by vascular corrosion cast/scanning electron microscope (SEM) technique. J Med Assoc Thail. 2012;95(Suppl 5):S133–41.

    Google Scholar 

  119. Zhang J, Xu Z, Gu J, Jiang S, Liu Q, Zheng Y, et al. HDAC3 inhibition in diabetic mice may activate Nrf2 preventing diabetes-induced liver damage and FGF21 synthesis and secretion leading to aortic protection. Am J Physiol Endocrinol Metab. 2018;315(2):E150–62.

    CAS  PubMed  Google Scholar 

  120. Dobias L, et al. Effect of sulodexide on vascular responses and liver mitochondrial function in diabetic rats. Physiol Res. 2015;64(Suppl 4):S497–505.

    CAS  PubMed  Google Scholar 

  121. Balakrishnan BB, et al. Moringa concanensis Nimmo extracts ameliorates hyperglycemia-mediated oxidative stress and upregulates PPARgamma and GLUT4 gene expression in liver and pancreas of streptozotocin-nicotinamide induced diabetic rats. Biomed Pharmacother. 2019;112:108688.

    CAS  PubMed  Google Scholar 

  122. Acikgoz E, Aktug H, Yigitturk G, Demir K, Guven U, Duzagac F, et al. Repression of the Notch pathway prevents liver damage in streptozotocin-induced diabetic mice. Folia Histochem Cytobiol. 2017;55(3):140–8.

    CAS  PubMed  Google Scholar 

  123. Lim A. Diabetic nephropathy - complications and treatment. Int J Nephrol Renovasc Dis. 2014;7:361–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tan WS, et al. Modeling heart failure risk in diabetes and kidney disease: limitations and potential applications of transverse aortic constriction in high-fat-fed mice. Am J Physiol Regul Integr Comp Physiol. 2018;314(6):R858–69.

    CAS  PubMed  Google Scholar 

  125. Woo V, et al. The role of sodium glucose cotransporter-2 (SGLT-2) inhibitors in heart failure and chronic kidney disease in type 2 diabetes. Curr Med Res Opin. 2019:1–13.

  126. Wang Q, Huang J, Sun Y, Zhang W, Gao Y, Yao W, et al. Association of microalbuminuria with diabetes is stronger in people with prehypertension compared to those with ideal blood pressure. Nephrology (Carlton). 2018;23(7):690–6.

    PubMed  Google Scholar 

  127. Ma T, et al. 4-O-methylhonokiol ameliorates type 2 diabetes-induced nephropathy in mice likely by activation of AMPK-mediated fatty acid oxidation and Nrf2-mediated anti-oxidative stress. Toxicol Appl Pharmacol. 2019.

  128. Aguilar D. Heart failure, diabetes mellitus, and chronic kidney disease: a clinical conundrum. Circ Heart Fail. 2016:9(7).

  129. Bello NA, Lewis EF, Desai AS, Anand IS, Krum H, McMurray J, et al. Increased risk of stroke with darbepoetin alfa in anaemic heart failure patients with diabetes and chronic kidney disease. Eur J Heart Fail. 2015;17(11):1201–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Abbas S, et al. Association of GSTP1 gene polymorphism with diabetic nephropathy and co-morbidities (hypertension and dyslipidemia) in type 2 diabetes mellitus. Br J Biomed Sci. 2019.

  131. Wang Y, He Y, Wang M, Lv P, Liu J, Wang J. Role of protease-activated receptor 2 in regulating focal segmental glomerulosclerosis. Cell Physiol Biochem. 2017;41(3):1147–55.

    CAS  PubMed  Google Scholar 

  132. Muller-Hocker J, et al. A case of idiopathic nodular glomerulosclerosis mimicking diabetic glomerulosclerosis (Kimmelstiel-Wilson type). Pathol Res Pract. 2002;198(5):375–9.

    CAS  PubMed  Google Scholar 

  133. Ucgul Atilgan C, et al. Effect of microalbuminuria on macular thickness in patients with type-2 diabetes mellitus. Eur J Ophthalmol. 2018:1120672118811256.

  134. Hippisley-Cox J, Coupland C. Diabetes treatments and risk of amputation, blindness, severe kidney failure, hyperglycaemia, and hypoglycaemia: open cohort study in primary care. BMJ. 2016;352:i1450.

    PubMed  PubMed Central  Google Scholar 

  135. Ito T, Kenmochi T, Aida N, Kurihara K, Kawai A, Ito T. Effectiveness of preceding solo kidney transplantation for type 1 diabetes with end-stage renal failure. Transplant Proc. 2018;50(10):3249–54.

    CAS  PubMed  Google Scholar 

  136. Corcostegui B, et al. Update on diagnosis and treatment of diabetic retinopathy: a consensus guideline of the Working Group of Ocular Health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society). J Ophthalmol. 2017;2017:8234186.

    PubMed  PubMed Central  Google Scholar 

  137. Rasta SH, Nikfarjam S, Javadzadeh A. Detection of retinal capillary nonperfusion in fundus fluorescein angiogram of diabetic retinopathy. Bioimpacts. 2015;5(4):183–90.

    PubMed  PubMed Central  Google Scholar 

  138. Juster-Switlyk K, Smith AG. Updates in diabetic peripheral neuropathy. F1000Res. 2016;5.

    Google Scholar 

  139. Kirschke J, Gambichler T, Altmeyer P, Kreuter A. Glove-and-stocking-like keratoderma with hyperhidrosis and perioral erythema. Clin Exp Dermatol. 2007;32(4):477–8.

    CAS  PubMed  Google Scholar 

  140. Rivera LR, Leung C, Pustovit RV, Hunne BL, Andrikopoulos S, Herath C, et al. Damage to enteric neurons occurs in mice that develop fatty liver disease but not diabetes in response to a high-fat diet. Neurogastroenterol Motil. 2014;26(8):1188–99.

    CAS  Google Scholar 

  141. Ward R, Valenzuela JP, Li W, Dong G, Fagan SC, Ergul A. Poststroke cognitive impairment and hippocampal neurovascular remodeling: the impact of diabetes and sex. Am J Physiol Heart Circ Physiol. 2018;315(5):H1402–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Mieritz MG, Rakêt LL, Hagen CP, Nielsen JE, Talman ML, Petersen JH, et al. A longitudinal study of growth, sex steroids, and IGF-1 in boys with physiological gynecomastia. J Clin Endocrinol Metab. 2015;100(10):3752–9.

    CAS  Google Scholar 

  143. Earle KA, Ng L, White S, Zitouni K. Sex differences in vascular stiffness and relationship to the risk of renal functional decline in patients with type 2 diabetes. Diab Vasc Dis Res. 2017;14(4):304–9.

    PubMed  Google Scholar 

  144. Werner KB, Elmståhl S, Christensson A, Pihlsgård M. Male sex and vascular risk factors affect cystatin C-derived renal function in older people without diabetes or overt vascular disease. Age Ageing. 2014;43(3):411–7.

    PubMed  Google Scholar 

  145. Maric-Bilkan C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. Clin Sci (Lond). 2017;131(9):833–46.

    CAS  Google Scholar 

  146. Herrera-Lopez EE, et al. The rs1256031 of estrogen receptor beta gene is associated with type 2 diabetes. Diabetes Metab Syndr. 2018;12(5):631–3.

    PubMed  Google Scholar 

  147. McGinley AL, et al. Additional sex combs-like family genes are required for normal cardiovascular development. Genesis. 2014;52(7):671–86.

    CAS  PubMed  Google Scholar 

  148. Eriksson AL, Lorentzon M, Vandenput L, Labrie F, Lindersson M, Syvänen AC, et al. Genetic variations in sex steroid-related genes as predictors of serum estrogen levels in men. J Clin Endocrinol Metab. 2009;94(3):1033–41.

    CAS  Google Scholar 

  149. Kojima S, Catavero C, Rinaman L. Maternal high-fat diet increases independent feeding in pre-weanling rat pups. Physiol Behav. 2016;157:237–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ullah R, et al. Postnatal feeding with high-fat diet induces obesity and precocious puberty in C57BL/6J mouse pups: a novel model of obesity and puberty. Front Med. 2017;11(2):266–76.

    PubMed  Google Scholar 

  151. Dehmel S, Nathan P, Bartel S, el-Merhie N, Scherb H, Milger K, et al. Intrauterine smoke exposure deregulates lung function, pulmonary transcriptomes, and in particular insulin-like growth factor (IGF)-1 in a sex-specific manner. Sci Rep. 2018;8(1):7547.

  152. Toriola AT, Surcel HM, Husing A, Grankvist K, Lakso HA, Schock H, et al. Association of serum 25-hydroxyvitamin D (25-OHD) concentrations with maternal sex steroids and IGF-1 hormones during pregnancy. Cancer Causes Control. 2011;22(6):925–8.

    Google Scholar 

  153. Sukhanov S, et al. IGF-1 reduces inflammatory responses, suppresses oxidative stress, and decreases atherosclerosis progression in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2007;27(12):2684–90.

    CAS  PubMed  Google Scholar 

  154. Ceylan-Isik AF, Li Q, Ren J. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis. Toxicol Lett. 2011;206(2):130–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Higashi Y, Sukhanov S, Shai SY, Danchuk S, Tang R, Snarski P, et al. Insulin-like growth factor-1 receptor deficiency in macrophages accelerates atherosclerosis and induces an unstable plaque phenotype in apolipoprotein E-deficient mice. Circulation. 2016;133(23):2263–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang J, Razuvaev A, Folkersen L, Hedin E, Roy J, Brismar K, et al. The expression of IGFs and IGF binding proteins in human carotid atherosclerosis, and the possible role of IGF binding protein-1 in the regulation of smooth muscle cell proliferation. Atherosclerosis. 2012;220(1):102–9.

    CAS  PubMed  Google Scholar 

  157. Pena JM, Min JK. Coronary artery disease: sex-related differences in CAD and plaque characteristics. Nat Rev Cardiol. 2016;13(6):318–9.

    CAS  PubMed  Google Scholar 

  158. Desai MY, Schoenhagen P. Noninvasive testing strategies in symptomatic, intermediate-risk CAD patients: a perspective on the “PROMISE” trial and its potential implementation in clinical practice. Cardiovasc Diagn Ther. 2015;5(2):166–8.

    PubMed  PubMed Central  Google Scholar 

  159. Klein BE, Klein R, Moss SE. Exogenous estrogen exposures and changes in diabetic retinopathy. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. Diabetes Care. 1999;22(12):1984–7.

    CAS  PubMed  Google Scholar 

  160. Slominski B, et al. Estrogen receptor alpha gene polymorphism and vascular complications in girls with type 1 diabetes mellitus. Mol Cell Biochem. 2018;437(1–2):153–61.

    CAS  PubMed  Google Scholar 

  161. Tiano JP, Delghingaro-Augusto V, le May C, Liu S, Kaw MK, Khuder SS, et al. Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes. J Clin Invest. 2011;121(8):3331–42.

    CAS  PubMed  Google Scholar 

  162. Miller VM, Duckles SP. Vascular actions of estrogens: functional implications. Pharmacol Rev. 2008;60(2):210–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Binay C, Simsek E, Yıldırım A, Kosger P, Demiral M, Kılıç Z. Growth hormone and the risk of atherosclerosis in growth hormone-deficient children. Growth Hormon IGF Res. 2015;25(6):294–7.

    CAS  Google Scholar 

  164. Pande RL, Hiatt WR, Zhang P, Hittel N, Creager MA. A pooled analysis of the durability and predictors of treatment response of cilostazol in patients with intermittent claudication. Vasc Med. 2010;15(3):181–8.

    PubMed  PubMed Central  Google Scholar 

  165. Hiatt WR, Money SR, Brass EP. Long-term safety of cilostazol in patients with peripheral artery disease: the CASTLE study (Cilostazol: a study in long-term effects). J Vasc Surg. 2008;47(2):330–6.

    PubMed  Google Scholar 

  166. Afarideh M, et al., Associations of serum S100B and S100P with the presence and classification of diabetic peripheral neuropathy in adults with type 2 diabetes: a case-cohort study. Can J Diabetes, 2019.

  167. Jin J, Shi Y, Gong J, Zhao L, Li Y, He Q, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther. 2019;10(1):95.

  168. Peng BY, et al. Addressing stem cell therapeutic approaches in pathobiology of diabetes and its complications. J Diabetes Res. 2018;2018:7806435.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Supported by the Collaborative Research Travel Grant (Burroughs Wellcome Fund) to RIM. EMB is a KL2 scholar partially supported by the UNC Clinical and Translational Science Award-K12 Scholars Program (KL2TR002490), the National Heart, Lung, and Blood Institute (K01HL145354)m and by the UNC-NORC Pilot & Feasibility Grant (P30DK056350).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward M. Bahnson.

Ethics declarations

Conflict of Interest

Dr. Mota reports grants from Burroughs Wellcome Fund, during the conduct of the study.

Mr. Samuel Morgan has nothing to disclose.

Dr. Bahnson reports grants from NIH, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Wound Healing and Tissue Repair

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mota, R.I., Morgan, S.E. & Bahnson, E.M. Diabetic Vasculopathy: Macro and Microvascular Injury. Curr Pathobiol Rep 8, 1–14 (2020). https://doi.org/10.1007/s40139-020-00205-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-020-00205-x

Keywords

Navigation