Skip to main content

Advertisement

Log in

ING1 and ING2: multifaceted tumor suppressor genes

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Inhibitor of Growth 1 (ING1) was identified and characterized as a “candidate” tumor suppressor gene in 1996. Subsequently, four more genes, also characterized as “candidate” tumor suppressor genes, were identified by homology search: ING2, ING3, ING4, and ING5. The ING proteins are characterized by a high homology in their C-terminal domain, which contains a Nuclear Localization Sequence and a Plant HomeoDomain (PHD), which has a high affinity to Histone 3 tri-methylated on lysine 4 (H3K4Me3). The ING proteins have been involved in the control of cell growth, senescence, apoptosis, chromatin remodeling, and DNA repair. Within the ING family, ING1 and ING2 form a subgroup since they are evolutionarily and functionally close. In yeast, only one gene, Pho23, is related to ING1 and ING2 and possesses also a PHD. Recently, the ING1 and ING2 tumor suppressor status has been fully established since several studies have described the loss of ING1 and ING2 protein expression in human tumors and both ING1 and ING2 knockout mice were reported to have spontaneously developed tumors, B cell lymphomas, and soft tissue sarcomas, respectively. In this review, we will describe for the first time what is known about the ING1 and ING2 genes, proteins, their regulations in both human and mice, and their status in human tumors. Furthermore, we explore the current knowledge about identified functions involving ING1 and ING2 in tumor suppression pathways especially in the control of cell cycle and in genome stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386 (6627):761, 763. doi:10.1038/386761a0

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    PubMed  CAS  Google Scholar 

  3. Garkavtsev I, Kazarov A, Gudkov A, Riabowol K (1996) Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet 14(4):415–420. doi:10.1038/ng1296-415

    PubMed  CAS  Google Scholar 

  4. Nagashima M, Shiseki M, Miura K, Hagiwara K, Linke SP, Pedeux R, Wang XW, Yokota J, Riabowol K, Harris CC (2001) DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci USA 98(17):9671–9676. doi:10.1073/pnas.161151798

    PubMed  CAS  Google Scholar 

  5. Nagashima M, Shiseki M, Pedeux RM, Okamura S, Kitahama-Shiseki M, Miura K, Yokota J, Harris CC (2003) A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis. Oncogene 22(3):343–350. doi:10.1038/sj.onc.1206115

    PubMed  CAS  Google Scholar 

  6. Shimada Y, Saito A, Suzuki M, Takahashi E, Horie M (1998) Cloning of a novel gene (ING1L) homologous to ING1, a candidate tumor suppressor. Cytogenet Cell Genet 83(3–4):232–235. doi:ccg83232

    PubMed  CAS  Google Scholar 

  7. Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J, Harris CC (2003) p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res 63(10):2373–2378

    PubMed  CAS  Google Scholar 

  8. Loewith R, Meijer M, Lees-Miller SP, Riabowol K, Young D (2000) Three yeast proteins related to the human candidate tumor suppressor p33(ING1) are associated with histone acetyltransferase activities. Mol Cell Biol 20(11):3807–3816

    PubMed  CAS  Google Scholar 

  9. He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K (2005) Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol 22(1):104–116. doi:10.1093/molbev/msh256msh256

    PubMed  CAS  Google Scholar 

  10. Soliman MA, Riabowol K (2007) After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci 32(11):509–519. doi:10.1016/j.tibs.2007.08.006

    PubMed  CAS  Google Scholar 

  11. Lee WY, Lee D, Chung WI, Kwon CS (2009) Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J 58(3):511–524. doi:10.1111/j.1365-313X.2009.03795.x

    PubMed  CAS  Google Scholar 

  12. Wagner MJ, Gogela-Spehar M, Skirrow RC, Johnston RN, Riabowol K, Helbing CC (2001) Expression of novel ING variants is regulated by thyroid hormone in the Xenopus laevis tadpole. J Biol Chem 276(50):47013–47020. doi:10.1074/jbc.M106965200M106965200

    PubMed  CAS  Google Scholar 

  13. Ythier D, Larrieu D, Brambilla C, Brambilla E, Pedeux R (2008) The new tumor suppressor genes ING: genomic structure and status in cancer. Int J Cancer 123(7):1483–1490. doi:10.1002/ijc.23790

    PubMed  CAS  Google Scholar 

  14. Kichina JV, Zeremski M, Aris L, Gurova KV, Walker E, Franks R, Nikitin AY, Kiyokawa H, Gudkov AV (2006) Targeted disruption of the mouse ing1 locus results in reduced body size, hypersensitivity to radiation and elevated incidence of lymphomas. Oncogene 25(6):857–866. doi:10.1038/sj.onc.1209118

    PubMed  CAS  Google Scholar 

  15. Coles AH, Liang H, Zhu Z, Marfella CG, Kang J, Imbalzano AN, Jones SN (2007) Deletion of p37Ing1 in mice reveals a p53-independent role for Ing1 in the suppression of cell proliferation, apoptosis, and tumorigenesis. Cancer Res 67(5):2054–2061. doi:10.1158/0008-5472.CAN-06-3558

    PubMed  CAS  Google Scholar 

  16. Coles AH, Marfella CG, Imbalzano AN, Steinman HA, Garlick DS, Gerstein RM, Jones SN (2008) p37Ing1b regulates B-cell proliferation and cooperates with p53 to suppress diffuse large B-cell lymphomagenesis. Cancer Res 68(21):8705–8714. doi:10.1158/0008-5472.CAN-08-0923

    PubMed  CAS  Google Scholar 

  17. Saito M, Kumamoto K, Robles AI, Horikawa I, Furusato B, Okamura S, Goto A, Yamashita T, Nagashima M, Lee TL, Baxendale VJ, Rennert OM, Takenoshita S, Yokota J, Sesterhenn IA, Trivers GE, Hussain SP, Harris CC (2010) Targeted disruption of ing2 results in defective spermatogenesis and development of soft-tissue sarcomas. PLoS ONE 5(11):e15541. doi:10.1371/journal.pone.0015541

    PubMed  Google Scholar 

  18. Zeremski M, Hill JE, Kwek SS, Grigorian IA, Gurova KV, Garkavtsev IV, Diatchenko L, Koonin EV, Gudkov AV (1999) Structure and regulation of the mouse ing1 gene. Three alternative transcripts encode two phd finger proteins that have opposite effects on p53 function. J Biol Chem 274(45):32172–32181

    PubMed  CAS  Google Scholar 

  19. Walzak AA, Veldhoen N, Feng X, Riabowol K, Helbing CC (2008) Expression profiles of mRNA transcript variants encoding the human inhibitor of growth tumor suppressor gene family in normal and neoplastic tissues. Exp Cell Res 314(2):273–285. doi:10.1016/j.yexcr.2007.07.029

    PubMed  CAS  Google Scholar 

  20. Cheung KJ Jr, Bush JA, Jia W, Li G (2000) Expression of the novel tumour suppressor p33(ING1) is independent of p53. Br J Cancer 83(11):1468–1472. doi:10.1054/bjoc.2000.1464

    PubMed  CAS  Google Scholar 

  21. Unoki M, Kumamoto K, Robles AI, Shen JC, Zheng ZM, Harris CC (2008) A novel ING2 isoform, ING2b, synergizes with ING2a to prevent cell cycle arrest and apoptosis. FEBS Lett 582(28):3868–3874. doi:10.1016/j.febslet.2008.10.024

    PubMed  CAS  Google Scholar 

  22. Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, Nagashima M, Takenoshita S, Yokota J, Harris CC (2008) Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res 68(9):3193–3203. doi:10.1158/0008-5472.CAN-07-2780

    PubMed  CAS  Google Scholar 

  23. Kumamoto K, Fujita K, Kurotani R, Saito M, Unoki M, Hagiwara N, Shiga H, Bowman ED, Yanaihara N, Okamura S, Nagashima M, Miyamoto K, Takenoshita S, Yokota J, Harris CC (2009) ING2 is upregulated in colon cancer and increases invasion by enhanced MMP13 expression. Int J Cancer 125(6):1306–1315. doi:10.1002/ijc.24437

    PubMed  CAS  Google Scholar 

  24. Eapen SA, Netherton SJ, Sarker KP, Deng L, Chan A, Riabowol K, Bonni S (2012) Identification of a novel function for the chromatin remodeling protein ING2 in muscle differentiation. PLoS ONE 7(7):e40684. doi:10.1371/journal.pone.0040684

    PubMed  CAS  Google Scholar 

  25. Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA, Baird CL, Zhu H, Field SJ, Lessnick SL, Villasenor J, Mehrotra B, Chen J, Rao VR, Brugge JS, Ferguson CG, Payrastre B, Myszka DG, Cantley LC, Wagner G, Divecha N, Prestwich GD, Yuan J (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114(1):99–111. doi:S009286740300480X

    PubMed  CAS  Google Scholar 

  26. Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, Zhao R, Kutateladze TG (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442(7098):100–103. doi:10.1038/nature04814

    PubMed  CAS  Google Scholar 

  27. Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Pena P, Lan F, Kaadige MR, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns BR, Ayer DE, Kutateladze TG, Shi Y, Cote J, Chua KF, Gozani O (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442(7098):96–99. doi:10.1038/nature04835

    PubMed  CAS  Google Scholar 

  28. Kuzmichev A, Zhang Y, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Mol Cell Biol 22(3):835–848

    PubMed  CAS  Google Scholar 

  29. Pena PV, Hom RA, Hung T, Lin H, Kuo AJ, Wong RP, Subach OM, Champagne KS, Zhao R, Verkhusha VV, Li G, Gozani O, Kutateladze TG (2008) Histone H3K4me3 binding is required for the DNA repair and apoptotic activities of ING1 tumor suppressor. J Mol Biol 380(2):303–312. doi:10.1016/j.jmb.2008.04.061

    PubMed  CAS  Google Scholar 

  30. Skowyra D, Zeremski M, Neznanov N, Li M, Choi Y, Uesugi M, Hauser CA, Gu W, Gudkov AV, Qin J (2001) Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. J Biol Chem 276(12):8734–8739. doi:10.1074/jbc.M007664200

    PubMed  CAS  Google Scholar 

  31. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC (1997) The structural basis for 14–3-3:phosphopeptide binding specificity. Cell 91(7):961–971

    PubMed  CAS  Google Scholar 

  32. Gong W, Russell M, Suzuki K, Riabowol K (2006) Subcellular targeting of p33ING1b by phosphorylation-dependent 14–3-3 binding regulates p21WAF1 expression. Mol Cell Biol 26(8):2947–2954. doi:10.1128/MCB.26.8.2947-2954.2006

    PubMed  CAS  Google Scholar 

  33. Russell MW, Soliman MA, Schriemer D, Riabowol K (2008) ING1 protein targeting to the nucleus by karyopherins is necessary for activation of p21. Biochem Biophys Res Commun 374(3):490–495. doi:10.1016/j.bbrc.2008.07.076

    PubMed  CAS  Google Scholar 

  34. Scott M, Bonnefin P, Vieyra D, Boisvert FM, Young D, Bazett-Jones DP, Riabowol K (2001) UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J Cell Sci 114(Pt 19):3455–3462

    PubMed  CAS  Google Scholar 

  35. Han X, Feng X, Rattner JB, Smith H, Bose P, Suzuki K, Soliman MA, Scott MS, Burke BE, Riabowol K (2008) Tethering by lamin A stabilizes and targets the ING1 tumour suppressor. Nat Cell Biol 10(11):1333–1340. doi:10.1038/ncb1792

    PubMed  CAS  Google Scholar 

  36. Feng X, Hara Y, Riabowol K (2002) Different HATS of the ING1 gene family. Trends Cell Biol 12(11):532–538

    PubMed  CAS  Google Scholar 

  37. Coles AH, Jones SN (2009) The ING gene family in the regulation of cell growth and tumorigenesis. J Cell Physiol 218(1):45–57. doi:10.1002/jcp.21583

    PubMed  CAS  Google Scholar 

  38. Culurgioni S, Munoz IG, Moreno A, Palacios A, Villate M, Palmero I, Montoya G, Blanco FJ (2012) The crystal structure of the inhibitor of growth 4 (ING4) dimerization domain reveals the functional organization of the ING family of chromatin binding proteins. J Biol Chem. doi:10.1074/jbc.M111.330001

    PubMed  Google Scholar 

  39. Palacios A, Moreno A, Oliveira BL, Rivera T, Prieto J, Garcia P, Fernandez-Fernandez MR, Bernado P, Palmero I, Blanco FJ (2010) The dimeric structure and the bivalent recognition of H3K4me3 by the tumor suppressor ING4 suggests a mechanism for enhanced targeting of the HBO1 complex to chromatin. J Mol Biol 396(4):1117–1127. doi:10.1016/j.jmb.2009.12.049

    PubMed  CAS  Google Scholar 

  40. Garate M, Campos EI, Bush JA, Xiao H, Li G (2007) Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. FASEB J 21(13):3705–3716. doi:10.1096/fj.07-8069com

    PubMed  CAS  Google Scholar 

  41. Garate M, Wong RP, Campos EI, Wang Y, Li G (2008) NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b). EMBO Rep 9(6):576–581. doi:10.1038/embor.2008.48

    PubMed  CAS  Google Scholar 

  42. Nie J, Liu L, Wu M, Xing G, He S, Yin Y, Tian C, He F, Zhang L (2010) HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation. FEBS Lett 584(14):3005–3012. doi:10.1016/j.febslet.2010.05.033

    PubMed  CAS  Google Scholar 

  43. Chen C, Matesic LE (2007) The Nedd4-like family of E3 ubiquitin ligases and cancer. Cancer Metastas Rev 26(3–4):587–604. doi:10.1007/s10555-007-9091-x

    CAS  Google Scholar 

  44. Kwei KA, Shain AH, Bair R, Montgomery K, Karikari CA, van de Rijn M, Hidalgo M, Maitra A, Bashyam MD, Pollack JR (2011) SMURF1 amplification promotes invasiveness in pancreatic cancer. PLoS ONE 6(8):e23924. doi:10.1371/journal.pone.002392

    PubMed  CAS  Google Scholar 

  45. Ythier D, Brambilla E, Binet R, Nissou D, Vesin A, de Fraipont F, Moro-Sibilot D, Lantuejoul S, Brambilla C, Gazzeri S, Pedeux R (2010) Expression of candidate tumor suppressor gene ING2 is lost in non-small cell lung carcinoma. Lung Cancer 69(2):180–186. doi:10.1016/j.lungcan.2009.11.006

    PubMed  Google Scholar 

  46. Gunduz M, Gunduz E, Rivera RS, Nagatsuka H (2008) The inhibitor of growth (ING) gene family: potential role in cancer therapy. Curr Cancer Drug Targets 8(4):275–284

    PubMed  CAS  Google Scholar 

  47. Chen L, Matsubara N, Yoshino T, Nagasaka T, Hoshizima N, Shirakawa Y, Naomoto Y, Isozaki H, Riabowol K, Tanaka N (2001) Genetic alterations of candidate tumor suppressor ING1 in human esophageal squamous cell cancer. Cancer Res 61(11):4345–4349

    PubMed  CAS  Google Scholar 

  48. Tokunaga E, Maehara Y, Oki E, Kitamura K, Kakeji Y, Ohno S, Sugimachi K (2000) Diminished expression of ING1 mRNA and the correlation with p53 expression in breast cancers. Cancer Lett 152(1):15–22

    PubMed  CAS  Google Scholar 

  49. Toyama T, Iwase H, Watson P, Muzik H, Saettler E, Magliocco A, DiFrancesco L, Forsyth P, Garkavtsev I, Kobayashi S, Riabowol K (1999) Suppression of ING1 expression in sporadic breast cancer. Oncogene 18(37):5187–5193. doi:10.1038/sj.onc.1202905

    PubMed  CAS  Google Scholar 

  50. Chen B, Campos EI, Crawford R, Martinka M, Li G (2003) Analyses of the tumour suppressor ING1 expression and gene mutation in human basal cell carcinoma. Int J Oncol 22(4):927–931

    PubMed  Google Scholar 

  51. Nouman GS, Anderson JJ, Crosier S, Shrimankar J, Lunec J, Angus B (2003) Downregulation of nuclear expression of the p33(ING1b) inhibitor of growth protein in invasive carcinoma of the breast. J Clin Pathol 56(7):507–511

    PubMed  CAS  Google Scholar 

  52. Takahashi M, Ozaki T, Todo S, Nakagawara A (2004) Decreased expression of the candidate tumor suppressor gene ING1 is associated with poor prognosis in advanced neuroblastomas. Oncol Rep 12(4):811–816

    PubMed  CAS  Google Scholar 

  53. Zhang HK, Pan K, Wang H, Weng DS, Song HF, Zhou J, Huang W, Li JJ, Chen MS, Xia JC (2008) Decreased expression of ING2 gene and its clinicopathological significance in hepatocellular carcinoma. Cancer Lett 261(2):183–192. doi:10.1016/j.canlet.2007.11.019

    PubMed  CAS  Google Scholar 

  54. Borkosky SS, Gunduz M, Nagatsuka H, Beder LB, Gunduz E, Ali MA, Rodriguez AP, Cilek MZ, Tominaga S, Yamanaka N, Shimizu K, Nagai N (2009) Frequent deletion of ING2 locus at 4q35.1 associates with advanced tumor stage in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 135(5):703–713. doi:10.1007/s00432-008-0507-y

    PubMed  CAS  Google Scholar 

  55. Sironi E, Cerri A, Tomasini D, Sirchia SM, Porta G, Rossella F, Grati FR, Simoni G (2004) Loss of heterozygosity on chromosome 4q32-35 in sporadic basal cell carcinomas: evidence for the involvement of p33ING2/ING1L and SAP30 genes. J Cutan Pathol 31(4):318–322. doi:187

    PubMed  Google Scholar 

  56. Zhang H, Ma H, Wang Q, Chen M, Weng D, Wang H, Zhou J, Li Y, Sun J, Chen Y, Liang X, Zhao J, Pan K, Xia J (2010) Analysis of loss of heterozygosity on chromosome 4q in hepatocellular carcinoma using high-throughput SNP array. Oncol Rep 23(2):445–455

    PubMed  CAS  Google Scholar 

  57. Okano T, Gemma A, Hosoya Y, Hosomi Y, Nara M, Kokubo Y, Yoshimura A, Shibuya M, Nagashima M, Harris CC, Kudoh S (2006) Alterations in novel candidate tumor suppressor genes, ING1 and ING2 in human lung cancer. Oncol Rep 15(3):545–549

    PubMed  CAS  Google Scholar 

  58. Lu F, Dai DL, Martinka M, Ho V, Li G (2006) Nuclear ING2 expression is reduced in human cutaneous melanomas. Br J Cancer 95(1):80–86. doi:10.1038/sj.bjc.6603205

    PubMed  CAS  Google Scholar 

  59. Vieyra D, Senger DL, Toyama T, Muzik H, Brasher PM, Johnston RN, Riabowol K, Forsyth PA (2003) Altered subcellular localization and low frequency of mutations of ING1 in human brain tumors. Clin Cancer Res 9(16 Pt 1):5952–5961

    PubMed  CAS  Google Scholar 

  60. Engelmann D, Putzer BM (2012) The dark side of E2F1: in transit beyond apoptosis. Cancer Res 72(3):571–575. doi:10.1158/0008-5472.CAN-11-2575

    PubMed  CAS  Google Scholar 

  61. Guo XB, Jing CQ, Li LP, Zhang L, Shi YL, Wang JS, Liu JL, Li CS (2011) Down-regulation of miR-622 in gastric cancer promotes cellular invasion and tumor metastasis by targeting ING1 gene. World J Gastroenterol 17(14):1895–1902. doi:10.3748/wjg.v17.i14.1895

    PubMed  CAS  Google Scholar 

  62. Bannister AJ, Kouzarides T (2004) Histone methylation: recognizing the methyl mark. Methods Enzymol 376:269–288. doi:10.1016/S0076-6879(03)76018-2

    PubMed  CAS  Google Scholar 

  63. Abad M, Moreno A, Palacios A, Narita M, Blanco F, Moreno-Bueno G, Palmero I (2011) The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. Aging Cell 10(1):158–171. doi:10.1111/j.1474-9726.2010.00651.x

    PubMed  CAS  Google Scholar 

  64. Vieyra D, Loewith R, Scott M, Bonnefin P, Boisvert FM, Cheema P, Pastyryeva S, Meijer M, Johnston RN, Bazett-Jones DP, McMahon S, Cole MD, Young D, Riabowol K (2002) Human ING1 proteins differentially regulate histone acetylation. J Biol Chem 277(33):29832–29839. doi:10.1074/jbc.M200197200

    PubMed  CAS  Google Scholar 

  65. Gomez-Cabello D, Callejas S, Benguria A, Moreno A, Alonso J, Palmero I (2010) Regulation of the microRNA processor DGCR8 by the tumor suppressor ING1. Cancer Res 70(5):1866–1874. doi:10.1158/0008-5472.CAN-09-2088

    PubMed  CAS  Google Scholar 

  66. Shi XB, Tepper CG, deVere White RW (2008) Cancerous miRNAs and their regulation. Cell Cycle 7(11):1529–1538

    PubMed  CAS  Google Scholar 

  67. Takahashi M, Seki N, Ozaki T, Kato M, Kuno T, Nakagawa T, Watanabe K, Miyazaki K, Ohira M, Hayashi S, Hosoda M, Tokita H, Mizuguchi H, Hayakawa T, Todo S, Nakagawara A (2002) Identification of the p33(ING1)-regulated genes that include cyclin B1 and proto-oncogene DEK by using cDNA microarray in a mouse mammary epithelial cell line NMuMG. Cancer Res 62(8):2203–2209

    PubMed  CAS  Google Scholar 

  68. Li N, Li Q, Cao X, Zhao G, Xue L, Tong T (2011) The tumor suppressor p33ING1b upregulates p16INK4a expression and induces cellular senescence. FEBS Lett 585(19):3106–3112. doi:10.1016/j.febslet.2011.08.044

    PubMed  CAS  Google Scholar 

  69. Kataoka H, Bonnefin P, Vieyra D, Feng X, Hara Y, Miura Y, Joh T, Nakabayashi H, Vaziri H, Harris CC, Riabowol K (2003) ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Res 63(18):5785–5792

    PubMed  CAS  Google Scholar 

  70. Shimada H, Liu TL, Ochiai T, Shimizu T, Haupt Y, Hamada H, Abe T, Oka M, Takiguchi M, Hiwasa T (2002) Facilitation of adenoviral wild-type p53-induced apoptotic cell death by overexpression of p33(ING1) in T.Tn human esophageal carcinoma cells. Oncogene 21(8):1208–1216. doi:10.1038/sj.onc.1205176

    PubMed  CAS  Google Scholar 

  71. Garkavtsev I, Grigorian IA, Ossovskaya VS, Chernov MV, Chumakov PM, Gudkov AV (1998) The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control. Nature 391(6664):295–298. doi:10.1038/34675

    PubMed  CAS  Google Scholar 

  72. Helbing CC, Veillette C, Riabowol K, Johnston RN, Garkavtsev I (1997) A novel candidate tumor suppressor, ING1, is involved in the regulation of apoptosis. Cancer Res 57(7):1255–1258

    PubMed  CAS  Google Scholar 

  73. Soliman MA, Berardi P, Pastyryeva S, Bonnefin P, Feng X, Colina A, Young D, Riabowol K (2008) ING1a expression increases during replicative senescence and induces a senescent phenotype. Aging Cell 7(6):783–794. doi:10.1111/j.1474-9726.2008.00427.x

    PubMed  CAS  Google Scholar 

  74. Vieyra D, Toyama T, Hara Y, Boland D, Johnston R, Riabowol K (2002) ING1 isoforms differentially affect apoptosis in a cell age-dependent manner. Cancer Res 62(15):4445–4452

    PubMed  CAS  Google Scholar 

  75. Abad M, Menendez C, Fuchtbauer A, Serrano M, Fuchtbauer EM, Palmero I (2007) Ing1 mediates p53 accumulation and chromatin modification in response to oncogenic stress. J Biol Chem 282(42):31060–31067. doi:10.1074/jbc.M701639200

    PubMed  CAS  Google Scholar 

  76. Tsang FC, Po LS, Leung KM, Lau A, Siu WY, Poon RY (2003) ING1b decreases cell proliferation through p53-dependent and -independent mechanisms. FEBS Lett 553(3):277–285

    PubMed  CAS  Google Scholar 

  77. Leung KM, Po LS, Tsang FC, Siu WY, Lau A, Ho HT, Poon RY (2002) The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2. Cancer Res 62(17):4890–4893

    PubMed  CAS  Google Scholar 

  78. Zawacka-Pankau J, Kostecka A, Sznarkowska A, Hedstrom E, Kawiak A (2010) p73 tumor suppressor protein: a close relative of p53 not only in structure but also in anti-cancer approach? Cell Cycle 9(4):720–728

    PubMed  CAS  Google Scholar 

  79. Melino G (2011) p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 18(9):1487–1499. doi:10.1038/cdd.2011.81

    PubMed  CAS  Google Scholar 

  80. Allocati N, Di Ilio C, De Laurenzi V (2012) p63/p73 in the control of cell cycle and cell death. Exp Cell Res 318(11):1285–1290. doi:10.1016/j.yexcr.2012.01.023

    PubMed  CAS  Google Scholar 

  81. Binda O, Nassif C, Branton PE (2008) SIRT1 negatively regulates HDAC1-dependent transcriptional repression by the RBP1 family of proteins. Oncogene 27(24):3384–3392. doi:10.1038/sj.onc.1211014

    PubMed  CAS  Google Scholar 

  82. Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91(3):325–334

    PubMed  CAS  Google Scholar 

  83. Thalappilly S, Feng X, Pastyryeva S, Suzuki K, Muruve D, Larocque D, Richard S, Truss M, von Deimling A, Riabowol K, Tallen G (2011) The p53 tumor suppressor is stabilized by inhibitor of growth 1 (ING1) by blocking polyubiquitination. PLoS ONE 6(6):e21065. doi:10.1371/journal.pone.0021065

    PubMed  CAS  Google Scholar 

  84. Gonzalez L, Freije JM, Cal S, Lopez-Otin C, Serrano M, Palmero I (2006) A functional link between the tumour suppressors ARF and p33ING1. Oncogene 25(37):5173–5179. doi:10.1038/sj.onc.1209526

    PubMed  CAS  Google Scholar 

  85. Tallen UG, Truss M, Kunitz F, Wellmann S, Unryn B, Sinn B, Lass U, Krabbe S, Holtkamp N, Hagemeier C, Wurm R, Henze G, Riabowol KT, von Deimling A (2008) Down-regulation of the inhibitor of growth 1 (ING1) tumor suppressor sensitizes p53-deficient glioblastoma cells to cisplatin-induced cell death. J Neurooncol 86(1):23–30. doi:10.1007/s11060-007-9436-x

    PubMed  CAS  Google Scholar 

  86. Feng X, Bonni S, Riabowol K (2006) HSP70 induction by ING proteins sensitizes cells to tumor necrosis factor alpha receptor-mediated apoptosis. Mol Cell Biol 26(24):9244–9255. doi:10.1128/MCB.01538-06

    PubMed  CAS  Google Scholar 

  87. Shi Y, Tu Z, Tang D, Zhang H, Liu M, Wang K, Calderwood SK, Xiao X (2006) The inhibition of LPS-induced production of inflammatory cytokines by HSP70 involves inactivation of the NF-kappaB pathway but not the MAPK pathways. Shock 26(3):277–284. doi:10.1097/01.shk.0000223134.17877.ad

    PubMed  CAS  Google Scholar 

  88. Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H, Feng Y, Han C, Zhou G, Rigby AC, Sharp FR (2004) Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev 18(12):1466–1481. doi:10.1101/gad.1188204

    PubMed  CAS  Google Scholar 

  89. Ma L, Chang N, Guo S, Li Q, Zhang Z, Wang W, Tong T (2008) CSIG inhibits PTEN translation in replicative senescence. Mol Cell Biol 28(20):6290–6301. doi:10.1128/MCB.00142-08

    PubMed  CAS  Google Scholar 

  90. Li N, Zhao G, Chen T, Xue L, Ma L, Niu J, Tong T (2012) Nucleolar protein CSIG is required for p33ING1 function in UV-induced apoptosis. Cell Death Dis 3:e283. doi:10.1038/cddis.2012.22

    PubMed  CAS  Google Scholar 

  91. Cheung KJ Jr, Mitchell D, Lin P, Li G (2001) The tumor suppressor candidate p33(ING1) mediates repair of UV-damaged DNA. Cancer Res 61(13):4974–4977

    PubMed  CAS  Google Scholar 

  92. Niehrs C, Schafer A (2012) Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol 22(4):220–227. doi:10.1016/j.tcb.2012.01.002

    PubMed  CAS  Google Scholar 

  93. Campos EI, Martinka M, Mitchell DL, Dai DL, Li G (2004) Mutations of the ING1 tumor suppressor gene detected in human melanoma abrogate nucleotide excision repair. Int J Oncol 25(1):73–80

    PubMed  CAS  Google Scholar 

  94. Kuo WH, Wang Y, Wong RP, Campos EI, Li G (2007) The ING1b tumor suppressor facilitates nucleotide excision repair by promoting chromatin accessibility to XPA. Exp Cell Res 313(8):1628–1638. doi:10.1016/j.yexcr.2007.02.010

    PubMed  CAS  Google Scholar 

  95. Wong RP, Lin H, Khosravi S, Piche B, Jafarnejad SM, Chen DW, Li G (2011) Tumour suppressor ING1b maintains genomic stability upon replication stress. Nucleic Acids Res 39(9):3632–3642. doi:10.1093/nar/gkq1337

    PubMed  CAS  Google Scholar 

  96. Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M (2004) Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23(19):3886–3896. doi:10.1038/sj.emboj.7600383

    PubMed  CAS  Google Scholar 

  97. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419(6903):135–141. doi:10.1038/nature00991

    PubMed  CAS  Google Scholar 

  98. Yu P, Huang B, Shen M, Lau C, Chan E, Michel J, Xiong Y, Payan DG, Luo Y (2001) p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues. Oncogene 20(4):484–489. doi:10.1038/sj.onc.1204113

    PubMed  CAS  Google Scholar 

  99. Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79(7):1233–1243

    PubMed  CAS  Google Scholar 

  100. Gulbis JM, Kelman Z, Hurwitz J, O’Donnell M, Kuriyan J (1996) Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87(2):297–306

    PubMed  CAS  Google Scholar 

  101. Simpson F, Lammerts van Bueren K, Butterfield N, Bennetts JS, Bowles J, Adolphe C, Simms LA, Young J, Walsh MD, Leggett B, Fowles LF, Wicking C (2006) The PCNA-associated factor KIAA0101/p15(PAF) binds the potential tumor suppressor product p33ING1b. Exp Cell Res 312(1):73–85. doi:10.1016/j.yexcr.2005.09.020

    PubMed  CAS  Google Scholar 

  102. Pena PV, Musselman CA, Kuo AJ, Gozani O, Kutateladze TG (2009) NMR assignments and histone specificity of the ING2 PHD finger. Magn Reson Chem 47(4):352–358. doi:10.1002/mrc.2390

    PubMed  CAS  Google Scholar 

  103. Smith KT, Martin-Brown SA, Florens L, Washburn MP, Workman JL (2010) Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex. Chem Biol 17(1):65–74. doi:10.1016/j.chembiol.2009.12.010

    PubMed  CAS  Google Scholar 

  104. Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, Lane WS, Tan S, Yang XJ, Cote J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21(1):51–64. doi:10.1016/j.molcel.2005.12.007

    PubMed  CAS  Google Scholar 

  105. Ryan RJ, Bernstein BE (2012) Molecular biology. Genetic events that shape the cancer epigenome. Science 336(6088):1513–1514. doi:10.1126/science.1223730

    PubMed  CAS  Google Scholar 

  106. Ythier D, Larrieu D, Binet R, Binda O, Brambilla C, Gazzeri S, Pedeux R (2010) Sumoylation of ING2 regulates the transcription mediated by Sin3A. Oncogene 29(44):5946–5956. doi:10.1038/onc.2010.325

    PubMed  CAS  Google Scholar 

  107. Larrieu D, Ythier D, Brambilla C, Pedeux R (2010) ING2 controls the G1 to S-phase transition by regulating p21 expression. Cell Cycle 9(19):3984–3990. doi:13208

    PubMed  CAS  Google Scholar 

  108. Tian M, Neil JR, Schiemann WP (2011) Transforming growth factor-beta and the hallmarks of cancer. Cell Signal 23(6):951–962. doi:10.1016/j.cellsig.2010.10.015

    PubMed  CAS  Google Scholar 

  109. Sarker KP, Kataoka H, Chan A, Netherton SJ, Pot I, Huynh MA, Feng X, Bonni A, Riabowol K, Bonni S (2008) ING2 as a novel mediator of transforming growth factor-beta-dependent responses in epithelial cells. J Biol Chem 283(19):13269–13279. doi:10.1074/jbc.M708834200

    PubMed  CAS  Google Scholar 

  110. Pedeux R, Sengupta S, Shen JC, Demidov ON, Saito S, Onogi H, Kumamoto K, Wincovitch S, Garfield SH, McMenamin M, Nagashima M, Grossman SR, Appella E, Harris CC (2005) ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol Cell Biol 25(15):6639–6648. doi:10.1128/MCB.25.15.6639-6648.2005

    PubMed  CAS  Google Scholar 

  111. Kaadige MR, Ayer DE (2006) The polybasic region that follows the plant homeodomain zinc finger 1 of Pf1 is necessary and sufficient for specific phosphoinositide binding. J Biol Chem 281(39):28831–28836. doi:10.1074/jbc.M605624200

    PubMed  CAS  Google Scholar 

  112. Jones DR, Bultsma Y, Keune WJ, Halstead JR, Elouarrat D, Mohammed S, Heck AJ, D’Santos CS, Divecha N (2006) Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell 23(5):685–695. doi:10.1016/j.molcel.2006.07.014

    PubMed  CAS  Google Scholar 

  113. Gozani O, Field SJ, Ferguson CG, Ewalt M, Mahlke C, Cantley LC, Prestwich GD, Yuan J (2005) Modification of protein sub-nuclear localization by synthetic phosphoinositides: evidence for nuclear phosphoinositide signaling mechanisms. Adv Enzyme Regul 45:171–185. doi:10.1016/j.advenzreg.2005.02.010

    PubMed  CAS  Google Scholar 

  114. Huang W, Zhang H, Davrazou F, Kutateladze TG, Shi X, Gozani O, Prestwich GD (2007) Stabilized phosphatidylinositol-5-phosphate analogues as ligands for the nuclear protein ING2: chemistry, biology, and molecular modeling. J Am Chem Soc 129(20):6498–6506. doi:10.1021/ja070195b

    PubMed  CAS  Google Scholar 

  115. Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA, Fontemaggi G, Fanciulli M, Schiltz L, Blandino G, Balsano C, Levrero M (2002) DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 9(1):175–186

    PubMed  CAS  Google Scholar 

  116. Zeng X, Lee H, Zhang Q, Lu H (2001) p300 does not require its acetylase activity to stimulate p73 function. J Biol Chem 276(1):48–52. doi:10.1074/jbc.C000722200

    PubMed  CAS  Google Scholar 

  117. Chen J, Ghazawi FM, Li Q (2010) Interplay of bromodomain and histone acetylation in the regulation of p300-dependent genes. Epigenetics 5(6):509–515

    PubMed  CAS  Google Scholar 

  118. Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68(6):1145–1155. doi:10.1016/j.bcp.2004.03.045

    PubMed  CAS  Google Scholar 

  119. Larrieu D, Ythier D, Binet R, Brambilla C, Brambilla E, Sengupta S, Pedeux R (2009) ING2 controls the progression of DNA replication forks to maintain genome stability. EMBO Rep 10(10):1168–1174. doi:10.1038/embor.2009.180

    PubMed  CAS  Google Scholar 

  120. Hasan S, Hassa PO, Imhof R, Hottiger MO (2001) Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 410(6826):387–391. doi:10.1038/35066610

    PubMed  CAS  Google Scholar 

  121. Larrieu D, Pedeux R (2009) SharING out the roles in replicatING DNA. Cell Cycle 8(22):3623–3624. doi:9947

    PubMed  CAS  Google Scholar 

  122. Wang J, Chin MY, Li G (2006) The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation. Cancer Res 66(4):1906–1911. doi:10.1158/0008-5472.CAN-05-3444

    PubMed  CAS  Google Scholar 

  123. Wang Y, Wang J, Li G (2006) Leucine zipper-like domain is required for tumor suppressor ING2-mediated nucleotide excision repair and apoptosis. FEBS Lett 580(16):3787–3793. doi:10.1016/j.febslet.2006.05.065

    PubMed  CAS  Google Scholar 

  124. Kim MK, Shin JM, Eun HC, Chung JH (2009) The role of p300 histone acetyltransferase in UV-induced histone modifications and MMP-1 gene transcription. PLoS ONE 4(3):e4864. doi:10.1371/journal.pone.0004864

    PubMed  Google Scholar 

  125. Loewith R, Smith JS, Meijer M, Williams TJ, Bachman N, Boeke JD, Young D (2001) Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae. J Biol Chem 276(26):24068–24074. doi:10.1074/jbc.M102176200

    PubMed  CAS  Google Scholar 

  126. Garkavtsev I, Riabowol K (1997) Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Mol Cell Biol 17(4):2014–2019

    PubMed  CAS  Google Scholar 

  127. Sun G, Jin S, Baskaran R (2009) MMR/c-Abl-dependent activation of ING2/p73alpha signaling regulates the cell death response to N-methyl-N’-nitro-N-nitrosoguanidine. Exp Cell Res 315(18):3163–3175. doi:10.1016/j.yexcr.2009.09.010

    PubMed  CAS  Google Scholar 

  128. De Biasio A, Campos-Olivas R, Sanchez R, Lopez-Alonso JP, Pantoja-Uceda D, Merino N, Villate M, Martin-Garcia JM, Castillo F, Luque I, Blanco FJ (2012) Proliferating cell nuclear antigen (PCNA) interactions in solution studied by NMR. PLoS ONE 7(11):e48390. doi:10.1371/journal.pone.0048390

    PubMed  Google Scholar 

  129. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724. doi:10.1038/nature07943

    PubMed  CAS  Google Scholar 

  130. Thakur S, Feng X, Qiao Shi Z, Ganapathy A, Kumar Mishra M, Atadja P, Morris D, Riabowol K (2012) ING1 and 5-azacytidine act synergistically to block breast cancer cell growth. PLoS ONE 7(8):e43671. doi:10.1371/journal.pone.0043671

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. D. Ythier for critical reading of this manuscript and H. Symington for careful reading of the English. R.P. is supported by INSERM (Institut National de la Santé et de la Recherche Medicale), C.G. is a recipient of a doctoral fellowship from the French Ministry of Education and Research, D.L. is recipient of a post-doctoral EMBO fellowship (ALTF 834-2011), and the work was supported by La Ligue Contre le Cancer (Grand Ouest), Association pour la Recherche sur le Cancer (ARC), Rennes Métropole (AIS) and Leucémie Espoir grants.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Pedeux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2013_1270_MOESM1_ESM.pdf

Supplementary Figure S1: Structure of Human ING1, mouse ING1, and ING2 genes, mRNAs and proteins. A. ING1 human gene. E1c, E1d, E1a, E1b, E1balt, E2 are respectively Exon 1c, Exon 1d, Exon 1a, Exon 1b, Exon 1balt, and Exon 2. Exons E1d and E1balt of ING1v2 and ING1v5 are represented in orange. They both code for the same protein ING1c (ING1v2/v5) as their ATG on E2 is the same. B. ING1 human mRNAs. C. ING1b human protein. All ING1 protein isoforms contain a NCR and a NLS in their central region and a PHD and a PBR in their C-terminal part. ING1b is also composed of a PIP and a PBD in its N-terminal part. D. ING1 mouse gene. E1a, E1b, E2 are respectively Exon 1a, 1b, 1c and Exon 2. E. ING1 mouse mRNAs. F. ING1 mouse proteins. The three mouse ING1 isoforms possess a NCR, a NLS, a PHD and a PBR. In addition, mouse ING1b contains a PIP and a PBD in its N-terminal domain. G. ING2 mouse gene. E1a, E1b, E2 are respectively Exon 1a, 1b and Exon 2. H. ING2 mouse mRNAs. I. ING2 mouse proteins. ING2a contains a LZL in its C terminal part. ING2a possesses a NCR and ING2b is truncated of a part of the NCR domain. Both ING2a and ING2b are composed of a NLS containing three NTS, a PHD zinc finger motif and a PBR. On genes and mRNAs, none coding regions are in yellow and coding region are represented in purple. Each mRNA variant is represented with its name on the left and its GenBank accession number on the right. Each protein is represented with its characterized domains with its name on the right and with its molecular weight, and its GenBank accession number on the left (PDF 51 kb)

18_2013_1270_MOESM2_ESM.pdf

Supplementary Figure S2: Sequences comparison between human and mouse ING1b or ING2 cDNAs and proteins. A. Human ING1b and mouse ING1 cDNA sequences alignment. B. Human ING1b and mouse ING1 protein sequences alignment. C. Human and mouse ING2 cDNA sequences alignment. D. Human and mouse ING2a and ING2b proteins alignment. For all alignments, the PIP is colored in pinked purple; the LZL amino acid sequence is colored in green the PBD is colored in blue; the NCR is colored in purple; the NLS is highlighted in blue; the three NTS are colored in blue; the REASP amino acid motif is colored in pink; the PHD is colored in red; the PBR is colored in orange. All alignments were carried out using CLUSTAL 2.1 multiple sequence alignment software (PDF 4.49 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guérillon, C., Larrieu, D. & Pedeux, R. ING1 and ING2: multifaceted tumor suppressor genes. Cell. Mol. Life Sci. 70, 3753–3772 (2013). https://doi.org/10.1007/s00018-013-1270-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1270-z

Keywords

Navigation