Skip to main content

Advertisement

Log in

Protein O-mannosylation is crucial for human mesencyhmal stem cells fate

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Human mesenchymal stem cells (MSC) are promising cell types in the field of regenerative medicine. Although many pathways have been dissected in the effort to better understand and characterize MSC potential, the impact of protein N- or O-glycosylation has been neglected. Deficient protein O-mannosylation is a pathomechanism underlying severe congenital muscular dystrophies (CMD) that start to develop at the embryonic developmental stage and progress in the adult, often in tissues where MSC exert their function. Here we show that O-mannosylation genes, many of which are putative or verified glycosyltransferases (GTs), are expressed in a similar pattern in MSC from adipose tissue, bone marrow, and umbilical cord blood and that their expression levels are retained constant during mesengenic differentiation. Inhibition of the first players of the enzymatic cascade, POMT1/2, resulted in complete abolishment of chondrogenesis and alterations of adipogenic and osteogenic potential together with a lethal effect during myogenic induction. Since to date, no therapy for CMD is available, we explored the possibility of using MSC extracellular vesicles (EVs) as molecular source of functional GTs mRNA. All MSC secrete POMT1 mRNA-containing EVs that are able to efficiently fuse with myoblasts which are among the most affected cells by CMD. Intriguingly, in a pomt1 patient myoblast line EVs were able to partially revert O-mannosylation deficiency and contribute to a morphology recovery. Altogether, these results emphasize the crucial role of protein O-mannosylation in stem cell fate and properties and open the possibility of using MSC vesicles as a novel therapeutic approach to CMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cook D, Genever P (2013) Regulation of mesenchymal stem cell differentiation. Adv Exp Med Biol 786:213–229. doi:10.1007/978-94-007-6621-1_12

    Article  PubMed  CAS  Google Scholar 

  2. Bossolasco P, Corti S, Strazzer S, Borsotti C, Del Bo R, Fortunato F, Salani S, Quirici N, Bertolini F, Gobbi A et al (2004) Skeletal muscle differentiation potential of human adult bone marrow cells. Exp Cell Res 295(1):66–78

    Article  PubMed  CAS  Google Scholar 

  3. Montelatici E, Baluce B, Ragni E, Lavazza C, Parazzi V, Mazzola R, Cantarella G, Brambilla M, Giordano R, Lazzari L (2014) Defining the identity of human adipose-derived mesenchymal stem cells. Biochem Cell Biol 20:1–9

    Google Scholar 

  4. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  5. Uezumi A, Ojima K, Fukada S, Ikemoto M, Masuda S, Miyagoe-Suzuki Y, Takeda S (2006) Functional heterogeneity of side population cells in skeletal muscle. Biochem Biophys Res Commun 341:864–873

    Article  PubMed  CAS  Google Scholar 

  6. Laino G, Graziano A, d’Aquino R, Pirozzi G, Lanza V, Valiante S, De Rosa A, Naro F, Vivarelli E, Papaccio G (2006) An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol 206:693–701

    Article  PubMed  CAS  Google Scholar 

  7. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942

    Article  PubMed  Google Scholar 

  8. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  9. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    Article  PubMed  Google Scholar 

  10. Barilani M, Lavazza C, Viganò M, Montemurro T, Boldrin V, Parazzi V, Montelatici E, Crosti M, Moro M, Giordano R et al (2015) Dissection of the cord blood stromal component reveals predictive parameters for culture outcome. Stem Cells Dev 24(1):104–114. doi:10.1089/scd.2014.0160

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bernardo ME, Fibbe WE (2012) Safety and efficacy of mesenchymal stromal cell therapy in autoimmune disorders. Ann N Y Acad Sci 1266:107–117. doi:10.1111/j.1749-6632.2012.06667.x.Review

    Article  PubMed  Google Scholar 

  12. Boregowda SV, Phinney DG (2012) Therapeutic applications of mesenchymal stem cells: current outlook. BioDrugs 26(4):201–208. doi:10.2165/11632790-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  13. György B, Hung ME, Breakefield XO, Leonard JN (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 55:439–464. doi:10.1146/annurevEVs-pharmtox-010814-124630

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roth Z, Yehezkel G, Khalaila I (2012) Identification and quantification of protein glycosylation. Int J Carbohydr Chem 2012. doi:10.1155/2012/640923

  15. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) (2009) Essentials of glycobiology, Chapter 6, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. ISBN-13: 9780879697709

  16. Hamouda H, Ullah M, Berger M, Sittinger M, Tauber R, Ringe J, Blanchard V (2013) N-glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells: towards a next generation of stem cell markers. Stem Cells Dev 22(23):3100–3113. doi:10.1089/scd.2013.0108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wells L (2013) The o-mannosylation pathway: glycosyltransferases and proteins implicated in congenital muscular dystrophy. J Biol Chem 288(10):6930–6935. doi:10.1074/jbc.R112.438978

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Manya H, Chiba A, Yoshida A, Wang X, Chiba Y, Jigami Y, Margolis RU, Endo T (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci USA 101(2):500–505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Willer T, Lee H, Lommel M, Yoshida-Moriguchi T, de Bernabe DB, Venzke D, Cirak S, Schachter H, Vajsar J, Voit T (2012) ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet 44:575–580

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Endo T (2015) Glycobiology of α-dystroglycan and muscular dystrophy. J Biochem 157(1):1–12. doi:10.1093/jb/mvu066

    Article  PubMed  CAS  Google Scholar 

  21. Winder SJ (2001) The complexities of dystroglycan. Trends Biochem Sci 26:118–124

    Article  PubMed  CAS  Google Scholar 

  22. Goddeeris MM, Wu B, Venzke D, Yoshida-Moriguchi T, Saito F, Matsumura K, Moore SA, Campbell KP (2013) LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy. Nature 503(7474):136–140. doi:10.1038/nature12605

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T, Muntoni F, Lee H, Nelson SF, Yu L, Campbell KP (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341(6148):896–899. doi:10.1126/science.1239951

    Article  PubMed  CAS  Google Scholar 

  24. Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Willer T, Inamori K, Venzke D, Harvey C, Morgensen G, Hara Y, Valero Beltrán, de Bernabé D, Yu L, Wright KM, Campbell KP (2014) The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. Elife 3. doi:10.7554/eLife.03941

    PubMed  PubMed Central  Google Scholar 

  26. Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T, Muntoni F, Lee H, Nelson SF, Yu L, Campbell KP (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341(6148):896–899. doi:10.1126/science.1239951

    Article  PubMed  CAS  Google Scholar 

  27. Inamori K, Endo T, Gu J, Matsuo I, Ito Y, Fujii S, Iwasaki H, Narimatsu H, Miyoshi E, Honke K, Taniguchi N (2004) N-Acetylglucosaminyltransferase IX acts on the GlcNAc beta 1,2-Man alpha 1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan. J Biol Chem 279(4):2337–2340

    Article  PubMed  CAS  Google Scholar 

  28. Ragni E, Montemurro T, Montelatici E, Lavazza C, Viganò M, Rebulla P, Giordano R, Lazzari L (2013) Differential microRNA signature of human mesenchymal stem cells from different sources reveals an “environmental-niche memory” for bone marrow stem cells. Exp Cell Res 319(10):1562–1574. doi:10.1016/j.yexcr.2013.04.002

    Article  PubMed  CAS  Google Scholar 

  29. Ragni E, Viganò M, Rebulla P, Giordano R, Lazzari L (2013) What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: how to choose the most reliable housekeeping genes. J Cell Mol Med 17(1):168–180. doi:10.1111/j.1582-4934.2012.01660.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Rojek JM, Campbell KP, Oldstone MB, Kunz S (2007) Old World arenavirus infection interferes with the expression of functional alpha-dystroglycan in the host cell. Mol Biol Cell 18(11):4493–4507

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Orchard MG, Neuss JC, Galley CM, Carr A, Porter DW, Smith P, Scopes DI, Haydon D, Vousden K, Stubberfield CR et al (2004) Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 14(15):3975–3978

    Article  PubMed  CAS  Google Scholar 

  32. Arroyo J, Hutzler J, Bermejo C, Ragni E, García-Cantalejo J, Botías P, Piberger H, Schott A, Sanz AB, Strahl S (2011) Functional and genomic analyses of blocked protein O-mannosylation in baker’s yeast. Mol Microbiol 79(6):1529–1546. doi:10.1111/j.1365-2958.2011.07537.x

    Article  PubMed  CAS  Google Scholar 

  33. Lommel M, Winterhalter PR, Willer T, Dahlhoff M, Schneider MR, Bartels MF, Renner-Müller I, Ruppert T, Wolf E, Strahl S (2013) Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion. Proc Natl Acad Sci USA 110(52):21024–21029. doi:10.1073/pnas.1316753110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MB, Schachter H, Wells L, Campbell KP (2010) O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327:88–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Dobson CM, Hempel SJ, Stalnaker SH, Stuart R, Wells L (2013) OMannosylation and human disease. Cell Mol Life Sci 70(16):2849–2857. doi:10.1007/s00018-012-1193-0

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Yoshikawa HY, Kawano T, Matsuda T, Kidoaki S, Tanaka MJ (2013) Morphology and adhesion strength of myoblast cells on photocurable gelatin under native and non-native micromechanical environments. Phys Chem B 117(15):4081–4088. doi:10.1021/jp4008224

    Article  CAS  Google Scholar 

  37. Takeichi M (1995) Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7:619–627

    Article  PubMed  CAS  Google Scholar 

  38. Tepass U (1999) Genetic analysis of cadherin function in animal morphogenesis. Curr Opin Cell Biol 11:540–548

    Article  PubMed  CAS  Google Scholar 

  39. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634

    Article  PubMed  CAS  Google Scholar 

  40. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    Article  PubMed  CAS  Google Scholar 

  41. Erdmann B, Kirsch FP, Rathjen FG, Moré MI (2003) N-cadherin is essential for retinal lamination in the zebrafish. Dev Dyn 226(3):570–577

    Article  PubMed  CAS  Google Scholar 

  42. Kadowaki M, Nakamura S, Machon O, Krauss S, Radice GL, Takeichi M (2007) N-cadherin mediates cortical organization in the mouse brain. Dev Biol 304(1):22–33

    Article  PubMed  CAS  Google Scholar 

  43. Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A, Celli J, van Beusekom E, van der Zwaag B, Kayserili H et al (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 71(5):1033–1043

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu L, Meng F, Ni M, Lee Y, Li G (2013) N-cadherin regulates osteogenesis and migration of bone marrow-derived mesenchymal stem cells. Mol Biol Rep 40(3):2533–2539. doi:10.1007/s11033-012-2334-0

    Article  PubMed  CAS  Google Scholar 

  45. Oberlender SA, Tuan RS (1994) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120(1):177–187

    PubMed  CAS  Google Scholar 

  46. Bian L, Guvendiren M, Mauck RL, Burdick JA (2013) Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc Natl Acad Sci USA 110(25):10117–10122. doi:10.1073/pnas.1214100110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Haÿ E, Dieudonné FX, Saidak Z, Marty C, Brun J, Da Nascimento S, Sonnet P, Marie PJ (2014) N-cadherin/wnt interaction controls bone marrow mesenchymal cell fate and bone mass during aging. J Cell Physiol 229(11):1765–1775. doi:10.1002/jcp.24629

    Article  PubMed  Google Scholar 

  48. Redfield A, Nieman MT, Knudsen KA (1997) Cadherins promote skeletal muscle differentiation in threedimensional cultures. J Cell Biol 138:1323–1331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mège RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98(4):534–542. doi:10.1016/j.bpj.2009.10.044

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Miyagoe-Suzuki Y, Masubuchi N, Miyamoto K, Wada MR, Yuasa S, Saito F, Matsumura K, Kanesaki H, Kudo A, Manya H, Endo T, Takeda S (2009) Reduced proliferative activity of primary POMGnT1-null myoblasts in vitro. Mech Dev 126(3–4):107–116. doi:10.1016/j.mod.2008.12.001

    Article  PubMed  CAS  Google Scholar 

  51. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067. doi:10.1681/ASN.2008070798

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345. doi:10.1038/nbt.1807

    Article  PubMed  CAS  Google Scholar 

  53. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779. doi:10.1038/mt.2011.164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project has received funding from European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No. 241879: “Regenerating Bone defects using new biomedical Engineering approaches”. The EuroBioBank and Telethon Network of Genetic Biobanks (GTB12001F) are gratefully acknowledged for providing biological samples. The work of M.L. and S.S. was supported by the Deutsche Forschungsgemeinschaft grant SFB1036, project A11 and LO-1807/1-1, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lazzari.

Ethics declarations

Funding

Funding sources had not involvement in study design, data generation or manuscript preparation.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragni, E., Lommel, M., Moro, M. et al. Protein O-mannosylation is crucial for human mesencyhmal stem cells fate. Cell. Mol. Life Sci. 73, 445–458 (2016). https://doi.org/10.1007/s00018-015-2007-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2007-y

Keywords

Navigation