Skip to main content
Log in

Dual regulation of fatty acid synthase (FASN) expression by O-GlcNAc transferase (OGT) and mTOR pathway in proliferating liver cancer cells

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Fatty acid synthase (FASN) participates in many fundamental biological processes, including energy storage and signal transduction, and is overexpressed in many cancer cells. We previously showed in a context of lipogenesis that FASN is protected from degradation by its interaction with O-GlcNAc transferase (OGT) in a nutrient-dependent manner. We and others also reported that OGT and O-GlcNAcylation up-regulate the PI3K/AKT/mTOR pathway that senses mitogenic signals and nutrient availability to drive cell cycle. Using biochemical and microscopy approaches, we show here that FASN co-localizes with OGT in the cytoplasm and, to a lesser extent, in the membrane fraction. This interaction occurs in a cell cycle-dependent manner, following the pattern of FASN expression. Moreover, we show that FASN expression depends on OGT upon serum stimulation. The level of FASN also correlates with the activation of the PI3K/AKT/mTOR pathway in hepatic cell lines, and in livers of obese mice and in a chronically activated insulin and mTOR signaling mouse model (PTEN-null mice). These results indicate that FASN is under a dual control of O-GlcNAcylation and mTOR pathways. In turn, blocking FASN with the small-molecule inhibitor C75 reduces both OGT and O-GlcNAcylation levels, and mTOR activation, highlighting a novel reciprocal regulation between these actors. In addition to the role of O-GlcNAcylation in tumorigenesis, our findings shed new light on how aberrant activity of FASN and mTOR signaling may promote the emergence of hepatic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukemia

ChREBP:

Carbohydrate Responsive Element Binding Protein

Co-IP:

Co-immunoprecipitation

DMEM:

Dulbecco’s Modified Eagle’s Medium

DMSO:

Dimethyl sulfoxide

Elovl:

Elongation of very long chain fatty acids proteins

FASN:

Fatty acid synthase

FCS:

Fetal calf serum

GEPIA:

Gene Expression Profiling Interactive Analysis

GFAT-1:

Glutamine:fructose–6–phosphate amidotransferase–1

GPCR:

G protein coupled-receptors

HBP:

Hexosamine biosynthetic pathway

HRP:

Horseradish peroxidase

IHH:

Immortalized human hepatocytes

LPA:

Lysophosphatidic acid

MEF:

Mouse embryonic fibroblasts

MEM:

Minimal Essential Medium

mTOR:

Mechanistic target of rapamycin

NaDOC:

Sodium deoxycholate

OD:

Optical density

OGA:

O-GlcNAcase

OGT:

O-GlcNAc transferase

p70S6K:

p70 Ribosomal protein S6 Kinase

PAF:

Paraformaldehyde

PBS:

Phosphate-Buffered Saline

PIP3:

Phosphatidylinositol–3,4,5–triphosphate

PLA:

Proximity ligation assay

PRAS40:

Proline-rich AKT substrate of 40 kDa

PTEN:

Phosphatase and tensin homolog

PTM:

Post-translational modification

rpS6:

Ribosomal protein S6

RT:

Room temperature

RT-qPCR:

Reverse transcription-quantitative polymerase chain reaction

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

siRNA:

Small interfering RNA

SREBP:

Sterol Responsive Element Binding Protein

TBS:

Tris-buffered saline

VLDL:

Very low density lipoproteins

WB:

Western blot

References

  1. Zambetti NA, Firestone AJ, Remsberg JR, Huang BJ, Wong JC, Long AM, Predovic M, Suciu RM, Inguva A, Kogan SC, Haigis KM, Cravatt BF, Shannon K (2020) Genetic disruption of N-RasG12D palmitoylation perturbs hematopoiesis and prevents myeloid transformation in mice. Blood 135(20):1772–1782

    PubMed  PubMed Central  Google Scholar 

  2. Fiorentino M, Zadra G, Palescandolo E, Fedele G, Bailey D, Fiore C, Nguyen PL, Migita T, Zamponi R, Di Vizio D, Priolo C, Sharma C, Xie W, Hemler ME, Mucci L, Giovannucci E, Finn S, Loda M (2008) Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Lab Investig 88(12):1340–1348

    CAS  PubMed  Google Scholar 

  3. Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F, Van de Sande T, Heemers H, Heyns W, Verhoeven G (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302(4):898–903

    CAS  PubMed  Google Scholar 

  4. Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5(4):247–254

    CAS  PubMed  Google Scholar 

  5. Faes S, Dormond O (2015) PI3K and AKT: unfaithful partners in cancer. Int J Mol Sci 16(9):21138–21152

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Y, An S, Ward R, Yang Y, Guo XX, Li W, Xu TR (2016) G protein-coupled receptors as promising cancer targets. Cancer Lett 376(2):226–239

    CAS  PubMed  Google Scholar 

  7. Baldini SF, Lefebvre T (2016) O-GlcNAcylation and the metabolic shift in high-proliferating cells: all the evidence suggests that sugars dictate the flux of lipid biogenesis in tumor processes. Front Oncol 22(6):6

    Google Scholar 

  8. Milgraum LZ, Witters LA, Pasternack GR, Kuhajda FP (1997) Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin Cancer Res 3(11):2115–2120

    CAS  PubMed  Google Scholar 

  9. Rashid A, Pizer ES, Moga M, Milgraum LZ, Zahurak M, Pasternack GR, Kuhajda FP, Hamilton SR (1997) Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia. Am J Pathol 150(1):201–208

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Swinnen JV, Roskams T, Joniau S, Van Poppel H, Oyen R, Baert L, Heyns W, Verhoeven G (2002) Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 98(1):19–22

    CAS  PubMed  Google Scholar 

  11. Kusakabe T, Nashimoto A, Honma K, Suzuki T (2002) Fatty acid synthase is highly expressed in carcinoma, adenoma and in regenerative epithelium and intestinal metaplasia of the stomach. Histopathology 40(1):71–79

    CAS  PubMed  Google Scholar 

  12. Orita H, Coulter J, Tully E, Abe M, Montgomery E, Alvarez H, Sato K, Hino O, Kajiyama Y, Tsurumaru M, Gabrielson E (2010) High levels of fatty acid synthase expression in esophageal cancers represent a potential target for therapy. Cancer Biol Ther 10(6):549–554

    CAS  PubMed  Google Scholar 

  13. Innocenzi D, Alò PL, Balzani A, Sebastiani V, Silipo V, La Torre G, Ricciardi G, Bosman C, Calvieri S (2003) Fatty acid synthase expression in melanoma. J Cutan Pathol 30(1):23–28

    CAS  PubMed  Google Scholar 

  14. Visca P, Sebastiani V, Botti C, Diodoro MG, Lasagni RP, Romagnoli F, Brenna A, De Joannon BC, Donnorso RP, Lombardi G, Alo PL (2004) Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res 24(6):4169–4173

    CAS  PubMed  Google Scholar 

  15. Alo PL, Amini M, Piro F, Pizzuti L, Sebastiani V, Botti C, Murari R, Zotti G, Di Tondo U (2007) Immunohistochemical expression and prognostic significance of fatty acid synthase in pancreatic carcinoma. Anticancer Res 27(4B):2523–2527

    CAS  PubMed  Google Scholar 

  16. Veigel D, Wagner R, Stübiger G, Wuczkowski M, Filipits M, Horvat R, Benhamú B, López-Rodríguez ML, Leisser A, Valent P, Grusch M, Hegardt FG, García J, Serra D, Auersperg N, Colomer R, Grunt TW (2015) Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. Int J Cancer 136(9):2078–2090

    CAS  PubMed  Google Scholar 

  17. Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA (2000) Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci USA 97(7):3450–3454

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Grunt TW, Slany A, Semkova M, Colomer R, López-Rodríguez ML, Wuczkowski M, Wagner R, Gerner C, Stübiger G (2020) Membrane disruption, but not metabolic rewiring, is the key mechanism of anticancer-action of FASN-inhibitors: a multi-omics analysis in ovarian cancer. Sci Rep 10(1):14877

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghaeidamini Harouni M, Rahgozar S, Rahimi Babasheikhali S, Safavi A, Ghodousi ES (2020) Fatty acid synthase, a novel poor prognostic factor for acute lymphoblastic leukemia which can be targeted by ginger extract. Sci Rep 10(1):14072

    CAS  PubMed  Google Scholar 

  20. Fardini Y, Dehennaut V, Lefebvre T, Issad T (2013) O-GlcNAcylation: a new cancer hallmark? Front Endocrinol (Lausanne) 4:99. https://doi.org/10.3389/fendo.2013.00099(eCollection 2013)

  21. Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S, Vosseller K, Reginato MJ (2010) Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29(19):2831–2842

    CAS  PubMed  Google Scholar 

  22. Lefebvre T, Alonso C, Mahboub S, Dupire MJ, Zanetta JP, Caillet-Boudin ML, Michalski JC (1999) Effect of okadaic acid on O-linked N-acetylglucosamine levels in a neuroblastoma cell line. Biochim Biophys Acta 1472(1–2):71–81

    CAS  PubMed  Google Scholar 

  23. Olivier-Van Stichelen S, Dehennaut V, Buzy A, Zachayus JL, Guinez C, Mir AM, El Yazidi-Belkoura I, Copin MC, Boureme D, Loyaux D, Ferrara P, Lefebvre T (2014) O-GlcNAcylation stabilizes β-catenin through direct competition with phosphorylation at threonine 41. FASEB J 28(8):3325–3338

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hardivillé S, Hart GW (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20(2):208–213

    PubMed  PubMed Central  Google Scholar 

  25. Yang X, Qian K (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18(7):452–465

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Baldini SF, Wavelet C, Hainault I, Guinez C, Lefebvre T (2016) The nutrient-dependent O-GlcNAc modification controls the expression of liver fatty acid synthase. J Mol Biol 428(16):3295–3304

    CAS  PubMed  Google Scholar 

  27. Hsieh TJ, Lin T, Hsieh PC, Liao MC, Shin SJ (2012) Suppression of glutamine:fructose-6-phosphate amidotransferase-1 inhibits adipogenesis in 3T3-L1 adipocytes. J Cell Physiol 227(1):108–115

    CAS  PubMed  Google Scholar 

  28. Vasconcelos-Dos-Santos A, de Queiroz RM, da Costa RB, Todeschini AR, Dias WB (2018) Hyperglycemia and aberrant O-GlcNAcylation: contributions to tumor progression. J Bioenerg Biomembr 50(3):175–187

    CAS  PubMed  Google Scholar 

  29. Boehmelt G, Wakeham A, Elia A, Sasaki T, Plyte S, Potter J, Yang Y, Tsang E, Ruland J, Iscove NN, Dennis JW, Mak TW (2000) Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J 19(19):5092–5104

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee DH, Kwon NE, Lee WJ, Lee MS, Kim DJ, Kim JH, Park SK (2020) Increased O-GlcNAcylation of c-Myc promotes pre-B cell proliferation. Cells 9(1):158. https://doi.org/10.3390/cells9010158

    Article  CAS  PubMed Central  Google Scholar 

  31. Olivier-Van Stichelen S, Guinez C, Mir AM, Perez-Cervera Y, Liu C, Michalski JC, Lefebvre T (2012) The hexosamine biosynthetic pathway and O-GlcNAcylation drive the expression of β-catenin and cell proliferation. Am J Physiol Endocrinol Metab 302(4):E417–E424

    CAS  PubMed  Google Scholar 

  32. Slawson C, Zachara NE, Vosseller K, Cheung WD, Lane MD, Hart GW (2005) Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J Biol Chem 280(38):32944–32956

    CAS  PubMed  Google Scholar 

  33. Olivier-Van Stichelen S, Drougat L, Dehennaut V, El Yazidi-Belkoura I, Guinez C, Mir AM, Michalski JC, Vercoutter-Edouart AS, Lefebvre T (2012) Serum-stimulated cell cycle entry promotes ncOGT synthesis required for cyclin D expression. Oncogenesis 1(12):e36

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Perez-Cervera Y, Dehennaut V, Aquino Gil M, Guedri K, Solórzano Mata CJ, Olivier-Van Stichelen S, Michalski JC, Foulquier F, Lefebvre T (2013) Insulin signaling controls the expression of O-GlcNAc transferase and its interaction with lipid microdomains. FASEB J 27(9):3478–3486

    CAS  PubMed  Google Scholar 

  35. Drougat L, Olivier-Van Stichelen S, Mortuaire M, Foulquier F, Lacoste AS, Michalski JC, Lefebvre T, Vercoutter-Edouart AS (2012) Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. Biochim Biophys Acta 1820(12):1839–1848

    CAS  PubMed  Google Scholar 

  36. Lefebvre T, Baert F, Bodart JF, Flament S, Michalski JC, Vilain JP (2004) Modulation of O-GlcNAc glycosylation during Xenopus oocyte maturation. J Cell Biochem 93(5):999–1010

    CAS  PubMed  Google Scholar 

  37. Dehennaut V, Slomianny MC, Page A, Vercoutter-Edouart AS, Jessus C, Michalski JC, Vilain JP, Bodart JF, Lefebvre T (2008) Identification of structural and functional O-linked N-acetylglucosamine-bearing proteins in Xenopus laevis oocyte. Mol Cell Proteomics 7(11):2229–2245

    CAS  PubMed  Google Scholar 

  38. Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400–406

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sodi VL, Khaku S, Krutilina R, Schwab LP, Vocadlo DJ, Seagroves TN, Reginato MJ (2015) mTOR/MYC axis regulates O-GlcNAc transferase expression and O-GlcNAcylation in breast cancer. Mol Cancer Res 13(5):923–933

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Very N, Steenackers A, Dubuquoy C, Vermuse J, Dubuquoy L, Lefebvre T, El Yazidi-Belkoura I (2018) Cross regulation between mTOR signaling and O-GlcNAcylation. J Bioenerg Biomembr 50(3):213–222

    CAS  PubMed  Google Scholar 

  41. Leturcq M, Mortuaire M, Hardivillé S, Schulz C, Lefebvre T, Vercoutter-Edouart AS (2018) O-GlcNAc transferase associates with the MCM2-7 complex and its silencing destabilizes MCM-MCM interactions. Cell Mol Life Sci 75(23):4321–4339

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Masclef L, Dehennaut V, Mortuaire M, Schulz C, Leturcq M, Lefebvre T, Vercoutter-Edouart AS (2019) Cyclin D1 stability is partly controlled by O-GlcNAcylation. Front Endocrinol (Lausanne) 22(10):106

    Google Scholar 

  43. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, Naito M, Enomoto K, Watanabe S, Mak TW, Nakano T (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Investig 113(12):1774–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Patitucci C, Couchy G, Bagattin A, Cañeque T, de Reyniès A, Scoazec JY, Rodriguez R, Pontoglio M, Zucman-Rossi J, Pende M, Panasyuk G (2017) Hepatocyte nuclear factor 1α suppresses steatosis-associated liver cancer by inhibiting PPARγ transcription. J Clin Investig 127(5):1873–1888

    PubMed  PubMed Central  Google Scholar 

  45. Crowe AR, Yue W (2019) Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio Protoc 9(24):e3465

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272(14):9308–9315

    CAS  PubMed  Google Scholar 

  47. Lazarus BD, Love DC, Hanover JA (2006) Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates. Glycobiology 16(5):415–421

    CAS  PubMed  Google Scholar 

  48. Madigan AA, Rycyna KJ, Parwani AV, Datiri YJ, Basudan AM, Sobek KM, Cummings JL, Basse PH, Bacich DJ, O’Keefe DS (2014) Novel nuclear localization of fatty acid synthase correlates with prostate cancer aggressiveness. Am J Pathol 184(8):2156–2162

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM (2008) Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451(7181):964–969

    CAS  PubMed  Google Scholar 

  50. Steenackers A, Olivier-Van Stichelen S, Baldini SF, Dehennaut V, Toillon RA, Le Bourhis X, El Yazidi-Belkoura I, Lefebvre T (2016) Silencing the nucleocytoplasmic O-GlcNAc transferase reduces proliferation, adhesion, and migration of cancer and fetal human colon cell lines. Front Endocrinol (Lausanne) 25(7):46

    Google Scholar 

  51. Biwi J, Biot C, Guerardel Y, Vercoutter-Edouart AS, Lefebvre T (2018) The many ways by which O-GlcNAcylation may orchestrate the diversity of complex glycosylations. Molecules 23(11):2858

    PubMed Central  Google Scholar 

  52. Feng D, Youn DY, Zhao X, Gao Y, Quinn WJ 3rd, Xiaoli AM, Sun Y, Birnbaum MJ, Pessin JE, Yang F (2015) mTORC1 down-regulates cyclin-dependent kinase 8 (CDK8) and cyclin C (CycC). PLoS One 10(6):e0126240

    PubMed  PubMed Central  Google Scholar 

  53. Panasyuk G, Espeillac C, Chauvin C, Pradelli LA, Horie Y, Suzuki A, Annicotte JS, Fajas L, Foretz M, Verdeguer F, Pontoglio M, Ferré P, Scoazec JY, Birnbaum MJ, Ricci JE, Pende M (2012) PPARγ contributes to PKM2 and HK2 expression in fatty liver. Nat Commun 3:672

    PubMed  Google Scholar 

  54. Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF (1998) Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 58(20):4611–4615

    CAS  PubMed  Google Scholar 

  55. Rae C, Fragkoulis GI, Chalmers AJ (2020) Cytotoxicity and radiosensitizing activity of the fatty acid synthase inhibitor C75 is enhanced by blocking fatty acid uptake in prostate cancer cells. Adv Radiat Oncol 5(5):994–1005

    PubMed  PubMed Central  Google Scholar 

  56. Chirala SS, Chang H, Matzuk M, Abu-Elheiga L, Mao J, Mahon K, Finegold M, Wakil SJ (2003) Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc Natl Acad Sci USA 100(11):6358–6363

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dehennaut V, Hanoulle X, Bodart JF, Vilain JP, Michalski JC, Landrieu I, Lippens G, Lefebvre T (2008) Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry. Biochem Biophys Res Commun 369(2):539–546

    CAS  PubMed  Google Scholar 

  58. Jiang M, Qiu Z, Zhang S, Fan X, Cai X, Xu B, Li X, Zhou J, Zhang X, Chu Y, Wang W, Liang J, Horvath T, Yang X, Wu K, Nie Y, Fan D (2016) Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling. Oncotarget 7(38):61390–61402

    PubMed  PubMed Central  Google Scholar 

  59. Zhang P, Wang C, Ma T, You S (2015) O-GlcNAcylation enhances the invasion of thyroid anaplastic cancer cells partially by PI3K/Akt1 pathway. Onco Targets Ther 9(8):3305–3313

    Google Scholar 

  60. Li T, Weng J, Zhang Y, Liang K, Fu G, Li Y, Bai X, Gao Y (2019) mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma. Cell Death Dis 10(8):619

    PubMed  PubMed Central  Google Scholar 

  61. Yoon S, Lee MY, Park SW, Moon JS, Koh YK, Ahn YH, Park BW, Kim KS (2007) Up-regulation of acetyl-CoA carboxylase a and fatty acid synthase by human epidermal growth factor 2 at the translational level in breast cancer cells. J Biol Chem 282:26122–26131

    CAS  PubMed  Google Scholar 

  62. Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY, Hirota S, Hosobe S, Tsukada T, Miura K, Kamada S, Saito K, Iiizumi M, Liu W, Ericsson J, Watabe K (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of AKT and sterol regulatory element binding protein-1. Cancer Res 68:1003–1011

    CAS  PubMed  Google Scholar 

  63. Wagner R, Stübiger G, Veigel D, Wuczkowski M, Lanzerstorfer P, Weghuber J, Karteris E, Nowikovsky K, Wilfinger-Lutz N, Singer CF, Colomer R, Benhamú B, López-Rodríguez ML, Valent P, Grunt TW (2017) Multi-level suppression of receptor-PI3K-mTORC1 by fatty acid synthase inhibitors is crucial for their efficacy against ovarian cancer cells. Oncotarget 8(7):11600–11613

    PubMed  PubMed Central  Google Scholar 

  64. Bruning U, Morales-Rodriguez F, Kalucka J, Goveia J, Taverna F, Queiroz KCS, Dubois C, Cantelmo AR, Chen R, Loroch S, Timmerman E, Caixeta V, Bloch K, Conradi LC, Treps L, Staes A, Gevaert K, Tee A, Dewerchin M, Semenkovich CF, Impens F, Schilling B, Verdin E, Swinnen JV, Meier JL, Kulkarni RA, Sickmann A, Ghesquière B, Schoonjans L, Li X, Mazzone M, Carmeliet P (2018) Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab 28(6):866-880.e15

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369(6483):756–758

    CAS  PubMed  Google Scholar 

  66. Di Vizio D, Adam RM, Kim J, Kim R, Sotgia F, Williams T, Demichelis F, Solomon KR, Loda M, Rubin MA, Lisanti MP, Freeman MR (2008) Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle 7(14):2257–2267

    CAS  PubMed  Google Scholar 

  67. Xue T, Zhang Y, Zhang L, Yao L, Hu X, Xu LX (2013) Proteomic analysis of two metabolic proteins with potential to translocate to plasma membrane associated with tumor metastasis development and drug targets. J Proteome Res 12(4):1754–1763

    CAS  PubMed  Google Scholar 

  68. Mollinedo F, Gajate C (2015) Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 57:130–146

    CAS  PubMed  Google Scholar 

  69. Jin Q, Yuan LX, Boulbes D, Baek JM, Wang YN, Gomez-Cabello D, Hawke DH, Yeung SC, Lee MH, Hortobagyi GN, Hung MC, Esteva FJ (2010) Fatty acid synthase phosphorylation: a novel therapeutic target in HER2-overexpressing breast cancer cells. Breast Cancer Res 12(6):R96

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Whelan SA, Lane MD, Hart GW (2008) Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling. J Biol Chem 283(31):21411–21417

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Julien Thévenet (INSERM, CHU Lille, UMR1190 Translational Research for Diabetes, European Genomic Institute for Diabetes, Lille, France) for helping in harvesting livers form C57Bl6 and ob/ob mice. We also thank Pr. David Vocadlo and Dr. Matthew Alteen from the Simon Fraser University for providing Ac5SGlcNAc and the SFR-Necker small animal histology and morphology platform for histological slide preparation.

Funding

This research was supported by the University of Lille, the “Centre National de la Recherche Scientifique (CNRS)” and from the “Agence Nationale de la Recherche” (ANR-JCJC-NUTRISENSPIK-16-CE14-0029) to G.P. SR is a recipient of a fellow from the “Ministère de l’Enseignement Supérieur et de la Recherche” and from the “Région Hauts-de-France”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Lefebvre.

Ethics declarations

Conflict of interest

The authors declare neither conflict of interest nor competing interests.

Ethics approval

All procedures were carried out according to the French guidelines for the care of experimental animals. Experimental procedure was approved by the Animal Care Committee of the French Research Ministry (Autor. APAFiS #1879-2018121918307521 and A75-14-08).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 kb)

Supplementary file2 (PPTX 5088 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raab, S., Gadault, A., Very, N. et al. Dual regulation of fatty acid synthase (FASN) expression by O-GlcNAc transferase (OGT) and mTOR pathway in proliferating liver cancer cells. Cell. Mol. Life Sci. 78, 5397–5413 (2021). https://doi.org/10.1007/s00018-021-03857-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03857-z

Keywords

Navigation