Skip to main content
Log in

Activation transcription factor-4 and the acute vascular response to injury

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Atherosclerosis is a complex fibroproliferative–inflammatory process triggered by vascular injury. Transcription factors play an important role in the control of genes that effect critical changes in the vessel wall. Recent evidence indicates an emerging role for activation transcription factor 4 (ATF4), a master regulator for evolutionarily conserved mammalian stress response pathways, in cardiovascular pathologic settings. For example, in endothelial cells, ATF4 is induced by atherogenic factors such as oxidised phospholipids and homocysteine, and in monocytes, ATF4 is activated by hypoxia. In this context, ATF4 is thought to regulate pro-inflammatory signalling cascades and subsequent apoptosis. ATF4 is induced in aortic smooth muscle cells by fibroblast growth factor 2 and in the intact vessel wall following balloon angioplasty. Our own work indicates that ATF4 knockdown blocks injury-inducible intimal proliferation. Furthermore, studies in ATF4-deficient mice have established a role for ATF4 in diet-induced diabetes and hyperlipidaemia. In this article, we will review recent developments on the regulation of this intriguing nuclear protein and its transcriptional roles in the context of vascular injury and related disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  2. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  PubMed  CAS  Google Scholar 

  3. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  PubMed  CAS  Google Scholar 

  4. Newby AC, Zaltsman AB (1999) Fibrous cap formation or destruction—the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 41:345–360

    Article  PubMed  CAS  Google Scholar 

  5. Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC (2009) Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost 101:1006–1011

    PubMed  CAS  Google Scholar 

  6. Chandrasekar B, Mummidi S, Perla RP, Bysani S, Dulin NO, Liu F, Melby PC (2003) Fractalkine (CX3CL1) stimulated by nuclear factor kappaB (NF-kappaB)-dependent inflammatory signals induces aortic smooth muscle cell proliferation through an autocrine pathway. Biochem J 373:547–558

    Article  PubMed  CAS  Google Scholar 

  7. Back M, Bu DX, Branstrom R, Sheikine Y, Yan ZQ, Hansson GK (2005) Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia. Proc Natl Acad Sci USA 102:17501–17506

    Article  PubMed  CAS  Google Scholar 

  8. Khachigian LM, Lindner V, Williams AJ, Collins T (1996) Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 271:1427–1431

    Article  PubMed  CAS  Google Scholar 

  9. Santiago FS, Lowe HC, Kavurma MM, Chesterman CN, Baker A, Atkins DG, Khachigian LM (1999) New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth factor injury. Nature Med 5:1264–1269

    Article  PubMed  CAS  Google Scholar 

  10. Khachigian LM, Fahmy RG, Zhang G, Bobryshev YV, Kaniaros A (2002) c-Jun regulates vascular smooth muscle cell growth and neointima formation after arterial injury: inhibition by a novel DNAzyme targeting c-Jun. J Biol Chem 277:22985–22991

    Article  PubMed  CAS  Google Scholar 

  11. Luo X, Cai H, Ni J, Bhindi R, Lowe HC, Chesterman CN, Khachigian LM (2009) c-Jun DNAzymes inhibit myocardial inflammation, ROS generation, infarct size and improve cardiac function after ischemia–reperfusion injury. Arterioscler Thromb Vasc Biol 29:1836–1842

    Article  PubMed  CAS  Google Scholar 

  12. Zhang N, Khachigian LM (2009) Injury-induced platelet-derived growth factor-receptor-alpha expression involves interleukin-1beta release and cooperative transactivation by NF-kappaB and ATF-4. J Biol Chem 284:27933–27943

    Article  PubMed  CAS  Google Scholar 

  13. Autieri MV (2003) Allograft-induced proliferation of vascular smooth muscle cells: potential targets for treating transplant vasculopathy. Curr Vasc Pharmacol 1:1–9

    Article  PubMed  CAS  Google Scholar 

  14. Kishore R, Losordo DW (2007) Gene therapy for restenosis: biological solution to a biological problem. J Mol Cell Cardiol 42:461–468

    Article  PubMed  CAS  Google Scholar 

  15. Khachigian LM (2006) Early growth response-1 in cardiovascular pathobiology. Circ Res 98:186–191

    Article  PubMed  CAS  Google Scholar 

  16. Khachigian LM (2000) Catalytic DNA as therapeutic agents and molecular tools to dissect biological function. J Clin Invest 106:1189–1195

    Article  PubMed  CAS  Google Scholar 

  17. Lee KA, Hai TY, SivaRaman L, Thimmappaya B, Hurst HC, Jones NC, Green MR (1987) A cellular protein, activating transcription factor, activates transcription of multiple E1A-inducible adenovirus early promoters. Proc Natl Acad Sci U S A 84:8355–8359

    Article  PubMed  CAS  Google Scholar 

  18. Hai T, Hartman MG (2001) The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273:1–11

    Article  PubMed  CAS  Google Scholar 

  19. Kilberg MS, Pan YX, Chen H, Leung-Pineda V (2005) Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr 25:59–85

    Article  PubMed  CAS  Google Scholar 

  20. Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20:436–443

    Article  PubMed  CAS  Google Scholar 

  21. Ameri K, Harris AL (2008) Activating transcription factor 4. Int J Biochem Cell Biol 40:14–21

    Article  PubMed  CAS  Google Scholar 

  22. Kato Y, Koike Y, Tomizawa K, Ogawa S, Hosaka K, Tanaka S, Kato T (1999) Presence of activating transcription factor 4 (ATF4) in the porcine anterior pituitary. Mol Cell Endocrinol 154:151–159

    Article  PubMed  CAS  Google Scholar 

  23. Murrell M, Khachigian L, Ward MR (2007) The role of c-Jun in PDTC-sensitive flow-dependent restenosis after angioplasty and stenting. Atherosclerosis 194:364–371

    Article  PubMed  CAS  Google Scholar 

  24. Ni J, Waldman A, Khachigian LM (2010) c-Jun regulates shear- and injury-inducible Egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits and intimal hyperplasia in human saphenous veins. J Biol Chem 285:4038–4048

    Article  PubMed  CAS  Google Scholar 

  25. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, Alam J (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276:20858–20865

    Article  PubMed  CAS  Google Scholar 

  26. Stocker R, Perrella MA (2006) Heme oxygenase-1: a novel drug target for atherosclerotic diseases? Circulation 114:2178–2189

    Article  PubMed  CAS  Google Scholar 

  27. Bowers AJ, Scully S, Boylan JF (2003) SKIP3, a novel Drosophila tribbles ortholog, is overexpressed in human tumors and is regulated by hypoxia. Oncogene 22:2823–2835

    Article  PubMed  CAS  Google Scholar 

  28. Reddy TR, Tang H, Li X, Wong-Staal F (1997) Functional interaction of the HTLV-1 transactivator Tax with activating transcription factor-4 (ATF4). Oncogene 14:2785–2792

    Article  PubMed  CAS  Google Scholar 

  29. Nishizawa M, Nagata S (1992) cDNA clones encoding leucine-zipper proteins which interact with G-CSF gene promoter element 1-binding protein. FEBS Lett 299:36–38

    Article  PubMed  CAS  Google Scholar 

  30. Haghighat A, Weiss D, Whalin MK, Cowan DP, Taylor WR (2007) Granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor exacerbate atherosclerosis in apolipoprotein E-deficient mice. Circulation 115:2049–2054

    Article  PubMed  CAS  Google Scholar 

  31. Raines EW (2004) PDGF and cardiovascular disease. Cytokine Growth Factor Rev 15:237–254

    Article  PubMed  CAS  Google Scholar 

  32. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  PubMed  CAS  Google Scholar 

  33. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  PubMed  CAS  Google Scholar 

  34. Outinen PA, Sood SK, Pfeifer SI, Pamidi S, Podor TJ, Li J, Weitz JI, Austin RC (1999) Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood 94:959–967

    PubMed  CAS  Google Scholar 

  35. Adams CM (2007) Role of the transcription factor ATF4 in the anabolic actions of insulin and the anti-anabolic actions of glucocorticoids. J Biol Chem 282:16744–16753

    Article  PubMed  CAS  Google Scholar 

  36. Yamaguchi S, Ishihara H, Yamada T, Tamura A, Usui M, Tominaga R, Munakata Y, Satake C, Katagiri H, Tashiro F, Aburatani H, Tsukiyama-Kohara K, Miyazaki J, Sonenberg N, Oka Y (2008) ATF4-mediated induction of 4E-BP1 contributes to pancreatic beta cell survival under endoplasmic reticulum stress. Cell Metab 7:269–276

    Article  PubMed  CAS  Google Scholar 

  37. Robertson LA, Kim AJ, Werstuck GH (2006) Mechanisms linking diabetes mellitus to the development of atherosclerosis: a role for endoplasmic reticulum stress and glycogen synthase kinase-3. Can J Physiol Pharm 84:39–48

    Article  CAS  Google Scholar 

  38. Azfer A, Niu J, Rogers LM, Adamski FM, Kolattukudy PE (2006) Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol 291:H1411–H1420

    CAS  Google Scholar 

  39. Rutkowski DT, Kaufman RJ (2003) All roads lead to ATF4. Developmental Cell 4:442–444

    Article  PubMed  CAS  Google Scholar 

  40. Oskolkova OV, Afonyushkin T, Leitner A, von Schlieffen E, Gargalovic PS, Lusis AJ, Binder BR, Bochkov VN (2008) ATF4-dependent transcription is a key mechanism in VEGF up-regulation by oxidized phospholipids: critical role of oxidized sn-2 residues in activation of unfolded protein response. Blood 112:330–339

    Article  PubMed  CAS  Google Scholar 

  41. Malabanan K, Kanellakis P, Bobik A, Khachigian LM (2008) ATF-4 induced by FGF-2 regulates VEGF-A transcription in vascular SMCs and mediates intimal thickening in rat arteries following balloon injury. Circ Res 103:378–387

    Article  PubMed  CAS  Google Scholar 

  42. Reidy MA (1992) Factors controlling smooth-muscle cell proliferation. Arch Pathol Lab Med 116:1276–1280

    PubMed  CAS  Google Scholar 

  43. Lowe HC, Chesterman CN, Hopkins A, Juergens CP, Khachigian LM (2001) Acute local release of fibroblast growth factor-2 but not transforming growth factor-beta1 following coronary stenting. Thromb Haemost 85:574–576

    PubMed  CAS  Google Scholar 

  44. Kelsen SG, Duan X, Ji R, Perez O, Liu C, Merali S (2008) Cigarette smoke induces an unfolded protein response in the human lung. Am J Respir Cell Mol Biol 38:541–550

    Article  PubMed  CAS  Google Scholar 

  45. Marchand A, Tomkiewicz C, Magne L, Barouki R, Garlatti M (2006) Endoplasmic reticulum stress induction of insulin-like growth factor-binding protein-1 involves ATF4. J Biol Chem 281:19124–19133

    Article  PubMed  CAS  Google Scholar 

  46. Boquist S, Ruotolo G, Skoglund-Andersson C, Tang R, Bjorkegren J, Bond MG, de Faire U, Brismar K, Hamsten A (2008) Correlation of serum IGF-I and IGFBP-1 and -3 to cardiovascular risk indicators and early carotid atherosclerosis in healthy middle-aged men. Clin Endocrinol (Oxf) 68:51–58

    Article  CAS  Google Scholar 

  47. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin–Lowry syndrome. Cell 117:387–398

    Article  PubMed  CAS  Google Scholar 

  48. Yang X, Karsenty G (2004) ATF4, the osteoblast accumulation of which is determined post-translationally, can induce osteoblast-specific gene expression in non-osteoblastic cells. J Biol Chem 279:47109–47114

    Article  PubMed  CAS  Google Scholar 

  49. Shekhonin BV, Domogatsky SP, Idelson GL, Koteliansky VE, Rukosuev VS (1987) Relative distribution of fibronectin and type I, III, IV, V collagens in normal and atherosclerotic intima of human arteries. Atherosclerosis 67:9–16

    Article  PubMed  CAS  Google Scholar 

  50. Trion A, van der Laarse A (2004) Vascular smooth muscle cells and calcification in atherosclerosis. Am Heart J 147:808–814

    Article  PubMed  CAS  Google Scholar 

  51. Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Patel S, Nelson SF, Horvath S, Berliner JA, Kirchgessner TG, Lusis AJ (2006) Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci USA 103:12741–12746

    Article  PubMed  CAS  Google Scholar 

  52. Mungrue IN, Pagnon J, Kohannim O, Gargalovic PS, Lusis AJ (2009) CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade. J Immunol 182:466–476

    PubMed  CAS  Google Scholar 

  53. Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM (1997) Angiotensin II induces apoptosis of human endothelial cells: protective effect of nitric oxide. Circ Res 81:970–976

    PubMed  CAS  Google Scholar 

  54. Wu HL, Li YH, Lin YH, Wang R, Li YB, Tie L, Song QL, Guo DA, Yu HM, Li XJ (2009) Salvianolic acid B protects human endothelial cells from oxidative stress damage: a possible protective role of glucose-regulated protein 78 induction. Cardiovasc Res 81:148–158

    Article  PubMed  CAS  Google Scholar 

  55. Masuoka HC, Townes TM (2002) Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood 99:736–745

    Article  PubMed  CAS  Google Scholar 

  56. Hettmann T, Barton K, Leiden JM (2000) Microphthalmia due to p53-mediated apoptosis of anterior lens epithelial cells in mice lacking the CREB-2 transcription factor. Dev Biol 222:110–123

    Article  PubMed  CAS  Google Scholar 

  57. Fischer C, Johnson J, Stillwell B, Conner J, Cerovac Z, Wilson-Rawls J, Rawls A (2004) Activating transcription factor 4 is required for the differentiation of the lamina propria layer of the vas deferens. Biol Reprod 70:371–378

    Article  PubMed  CAS  Google Scholar 

  58. Seo J, Fortuno ES 3rd, Suh JM, Stenesen D, Tang W, Parks EJ, Adams CM, Townes T, Graff JM (2009) Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes 58:2565–2573

    Article  PubMed  CAS  Google Scholar 

  59. Yoshizawa T, Hinoi E, Jung DY, Kajimura D, Ferron M, Seo J, Graff JM, Kim JK, Karsenty G (2009) The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J Clin Invest 119:2807–2817

    Article  PubMed  CAS  Google Scholar 

  60. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645

    Article  PubMed  CAS  Google Scholar 

  61. Estes SD, Stoler DL, Anderson GR (1995) Normal fibroblasts induce the C/EBP beta and ATF-4 bZIP transcription factors in response to anoxia. Exp Cell Res 220:47–54

    Article  PubMed  CAS  Google Scholar 

  62. Ameri K, Lewis CE, Raida M, Sowter H, Hai T, Harris AL (2004) Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells. Blood 103:1876–1882

    Article  PubMed  CAS  Google Scholar 

  63. Talukder AH, Vadlamudi R, Mandal M, Kumar R (2000) Heregulin induces expression, DNA binding activity, and transactivating functions of basic leucine zipper activating transcription factor 4. Cancer Res 60:276–281

    PubMed  CAS  Google Scholar 

  64. Siu F, Bain PJ, LeBlanc-Chaffin R, Chen H, Kilberg MS (2002) ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem 277:24120–24127

    Article  PubMed  CAS  Google Scholar 

  65. Chen H, Pan YX, Dudenhausen EE, Kilberg MS (2004) Amino acid deprivation induces the transcription rate of the human asparagine synthetase gene through a timed program of expression and promoter binding of nutrient-responsive basic region/leucine zipper transcription factors as well as localized histone acetylation. J Biol Chem 279:50829–50839

    Article  PubMed  CAS  Google Scholar 

  66. Turpaev K, Bouton C, Diet A, Glatigny A, Drapier JC (2005) Analysis of differentially expressed genes in nitric oxide-exposed human monocytic cells. Free Radic Biol Med 38:1392–1400

    Article  PubMed  CAS  Google Scholar 

  67. Roybal CN, Yang S, Sun CW, Hurtado D, Vander Jagt DL, Townes TM, Abcouwer SF (2004) Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J Biol Chem 279:14844–14852

    Article  PubMed  CAS  Google Scholar 

  68. Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, Chan PH (2005) Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. J Cereb Blood Flow Metab 25:41–53

    Article  PubMed  CAS  Google Scholar 

  69. Chakraborty G, Jain S, Kundu GC (2008) Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res 68:152–161

    Article  PubMed  CAS  Google Scholar 

  70. Blais JD, Filipenko V, Bi M, Harding HP, Ron D, Koumenis C, Wouters BG, Bell JC (2004) Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24:7469–7482

    Article  PubMed  CAS  Google Scholar 

  71. Elbarghati L, Murdoch C, Lewis CE (2008) Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunobiology 213:899–908

    Article  PubMed  CAS  Google Scholar 

  72. Roybal CN, Hunsaker LA, Barbash O, Vander Jagt DL, Abcouwer SF (2005) The oxidative stressor arsenite activates vascular endothelial growth factor mRNA transcription by an ATF4-dependent mechanism. J Biol Chem 280:20331–20339

    Article  PubMed  CAS  Google Scholar 

  73. Ogawa Y, Saito Y, Nishio K, Yoshida Y, Ashida H, Niki E (2008) Gamma-tocopheryl quinone, not alpha-tocopheryl quinone, induces adaptive response through up-regulation of cellular glutathione and cysteine availability via activation of ATF4. Free Radic Res 42:674–687

    Article  PubMed  CAS  Google Scholar 

  74. Nakka VP, Gusain A, Raghubir R (2010) Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox Res 17:189–202

    Article  PubMed  Google Scholar 

  75. Karpinski BA, Morle GD, Huggenvik J, Uhler MD, Leiden JM (1992) Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci U S A 89:4820–4824

    Article  PubMed  CAS  Google Scholar 

  76. Shimizu M, Nomura Y, Suzuki H, Ichikawa E, Takeuchi A, Suzuki M, Nakamura T, Nakajima T, Oda K (1998) Activation of the rat cyclin A promoter by ATF2 and Jun family members and its suppression by ATF4. Exp Cell Res 239:93–103

    Article  PubMed  CAS  Google Scholar 

  77. Chen A, Muzzio IA, Malleret G, Bartsch D, Verbitsky M, Pavlidis P, Yonan AL, Vronskaya S, Grody MB, Cepeda I, Gilliam TC, Kandel ER (2003) Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron 39:655–669

    Article  PubMed  CAS  Google Scholar 

  78. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520

    Article  PubMed  CAS  Google Scholar 

  79. Fung H, Liu P, Demple B (2007) ATF4-dependent oxidative induction of the DNA repair enzyme Ape1 counteracts arsenite cytotoxicity and suppresses arsenite-mediated mutagenesis. Mol Cell Biol 27:8834–8847

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levon M. Khachigian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malabanan, K.P., Khachigian, L.M. Activation transcription factor-4 and the acute vascular response to injury. J Mol Med 88, 545–552 (2010). https://doi.org/10.1007/s00109-010-0615-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0615-4

Keywords

Navigation