Skip to main content

Advertisement

Log in

Cannabinoid receptor 1 disturbance of PPARγ2 augments hyperglycemia induction of mesangial inflammation and fibrosis in renal glomeruli

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Intensive fibrosis in the glomerular microenvironment is a prominent feature of diabetic nephropathy. Cannabinoid receptor 1 (CB1R) reportedly mediates diabetes-induced renal injury. However, studies on the molecular events underlying CB1R promotion of renal dysfunction are limited. This study is undertaken to investigate whether CB1R signaling via Ras or PPARγ pathway regulates mesangial fibrosis in diabetic kidneys. In streptozotocin-induced diabetic rats, hyperglycemia induced glomerular hypertrophy and fibrosis in association with increased IL-1β, fibronectin, and CB1R expressions and reduced PPARγ2 signaling. CB1R transgenic mice gained kidney weight, and renal glomeruli strongly displayed IL-1β and fibrotic matrices. Disruption of CB1R by antisense oligonucleotides or inverse agonist AM251 restored PPARγ2 signaling and reduced the promotional effects of hyperglycemia on the expression of fibrogenic transcription factor c-Jun, inflammation regulator SOCS3, proinflammatory cytokines, and accumulation of fibrotic matrix. PPARγ agonist rosiglitazone reduced the hyperglycemia-mediated enhancement of CB1R signaling, inflammation, and glomerular fibrosis in diabetic animals. In vitro, CB1R antagonism restored PPARγ2 action and reduced the promotional effects of high glucose on Ras, ERK, c-Jun, SOCS3 signaling, IL-1β, and fibronectin expression in renal mesangial cells. Activation of PPARγ2 reduced the high glucose-induced CB1R expression in mesangial cells. Taken together, CB1R signaling contributes to the hyperglycemia disturbance of PPARγ2 signaling and increases inflammatory cytokine secretion and fibrotic matrix deposition in renal glomeruli. CB1R mediates the hyperglycemia-induced inflammation and fibrosis in mesangial cells by regulating Ras, ERK, and PPARγ2 signaling. CB1R blockade has a therapeutic potential to reduce the deleterious actions of hyperglycemia on renal glomerular integrity.

Key message

  • Hyperglycemia increases glomerular fibrosis, inflammation, and CB1R signaling.

  • CB1R signaling promotes fibrosis and inflammation of renal tissue.

  • Loss of CB1R function alleviates diabetes-mediated renal deterioration.

  • PPARγ agonist decreases CB1R expression in diabetic renal glomeruli.

  • Ras and ERK mediated CB1R promotion of fibrosis matrix deposition in mesangial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Emerging Risk Collaboration. Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whicncup PH, Mukamal KJ, Gillum RF, Holme I et al (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364:829–841

    Article  Google Scholar 

  2. Schena FP, Gesualdo L (2005) Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16:30–33

    Article  Google Scholar 

  3. Li J, Zhu H, Shen E, Wan L, Amold JM, Peng T (2010) Deficiency of rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 69:2033–2042

    Article  Google Scholar 

  4. Darisipudi MN, Kulkarni OP, Sayyed SG, Ryu M, Migliorini A, Sagrinati C, Parente E, Vater A, Eulberg D, Klussmann S et al (2011) Dual blockade of the homeostatic chemokines CXCL12 and the pro-inflammatory chemokine CCL2 has additative protective effects on diabetic kidney disease. Am J Pathol 179:116–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Despres JP, Golay A, Sjostrom L (2005) Rimonabant in Obesity-Lipid Study Group. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121–2134

    Article  CAS  PubMed  Google Scholar 

  6. Idris AI, Van’t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, Ralston SH (2005) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 11:774–779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bromberg KD, Ma’ayan A, Neves SR, Iyengar R (2008) Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science 320:903–909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Domenicali M, Caraceni P, Glannone F, Pertosa AM, Principe A, Zambruni A, Trevisani F, Crod T, Bernadi M (2009) Cannabinoid type 1 receptor antagonism delays ascites formation in rats with cirrhosis. Gastroenterology 137:341–349

    Article  CAS  PubMed  Google Scholar 

  9. Barutta F, Corbelli A, Mastrocola R, Gambino R, Di Marzo V, Pinach S, Pastalsi MP, Perin PC, Cruden G (2010) Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes 59:1046–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Lim JC, Lim SK, Han HJ, Park SH (2010) Cannabinoid receptor 1 mediates palmitic acid-induced via endoplasmic reticulum stress in human renal proximal tubular cells. J Cell Physiol 225:654–663

    Article  CAS  PubMed  Google Scholar 

  11. Mukhopadhyay P, Pan H, Rajesh M, Batkai S, Patel V, Harvey-White J, Mukhopadhyay B, Hasko G, Gao B, Mackie K et al (2010) CB1R cannabinoid receptors promotes oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br J Pharmacol 160:657–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lim MP, Devi LA, Rozenfeld R (2011) Cannabidiol causes activated hepatic stellate cell death through a mechanism of endoplasmic reticulum stress-induced apoptosis. Cell Death Dis 2:e170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rajesh M, Barkai S, Kechrid M, Muckhopadhyay P, Lee WS, Horvath B, Holovac E, Cinar R, Liaudet L, Mackie K et al (2012) Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes 61:716–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nicholas SB, Liu J, Kim J, Ren Y, Collins AR, Nguyen L, Hsueh WA (2010) Critical role for osteoponitin in diabetic nephropathy. Kidney Int 77:588–600

    Article  CAS  PubMed  Google Scholar 

  15. Yang HC, Deleuze S, Zuo Y, Potthoff SA, Ma LJ, Fogo AB (2009) The PPARgamma agonist pioglitazone ameliorates aging-related progressive renal injury. J Am Soc Nephrol 20:2380–2388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Du H, Chen X, Zhang J, Chen C (2011) Inhibition of COX2 expression by endocannabinoid 2-arachidonoylglycerol is mediated via PPAR-γ. Br J Pharmacol 163:1533–1549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rajesh M, Mukhopadhyay P, Hasko G, Pacher P (2008) Cannabinoid CB1R receptor inhibition decreases vascular smooth muscle migration and proliferation. Biochem Biophys Res Commun 377:1248–1252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lin CL, Wang FS, Kuo YR, Huang YT, Huang HC, Sun YC, Kuo YH (2006) Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries. Kidney Int 69:1593–1600

    Article  CAS  PubMed  Google Scholar 

  19. Hsiao YC, Chang HH, Tsai CY, Jong TJ, Horng LS, Lin SF, Tsai TF (2004) Coat color-tagged green mouse with EGFP expressed from the RNA polymerase II promoter. Genesis 39:122–129

    Article  CAS  PubMed  Google Scholar 

  20. Lin CL, Wang CY, Huang YT, Kuo YH, Surendran K, Wang FS (2006) Wnt/β-catenin signaling modulates survival of high glucose-stressed glomerular mesangial cells. J Am Soc Nephrol 17:2812–2820

    Article  CAS  PubMed  Google Scholar 

  21. Lin CL, Wang JY, Ko JY, Huang YT, Kuo YH, Wang FS (2010) Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction. J Am Soc Nephrol 21:124–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. El-Remessy AB, Rajesh M, Mujhopadhyay P, Horvath B, Patel V, Al-Gayyar MM, Pillai BA, Pacher P (2011) Cannabinoid receptor activation contributes to vascular inflammation and cell death in a mouse model of diabetic retinopathy and a human retinal cell line. Diabetologia 54:1567–1578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ko JY, Wu RW, Kuo SJ, Chen MW, Yeh DW, Ke HC, Wu SL, Wang FS (2012) Cannabinoid receptor 1 mediates glucocorticoid-induced bone loss by perturbing bone acquisition and marrow adipogenesis. Arthritis Rheum 64:1204–1214

    Article  CAS  PubMed  Google Scholar 

  24. Servettaz A, Kavian N, Nicco C, Deveaux V, Chéreau C, Wang A, Zimmer A, Lotersztajn S, Weill B, Batteux F (2010) Targeting of the cannabinoid pathway limits the development of fibrosis and autoimmunity in a mouse model of systemic sclerosis. Am J Pathol 177:187–196

    Article  PubMed Central  PubMed  Google Scholar 

  25. Tallett AJ, Blundell JE, Rodgers JR (2007) Acute anorectic response to cannabinoid CB1R receptor antagonist/inverse agonist AM251 in rats: indirect behavior mediation. Behav Pharmacol 18:591–600

    Article  PubMed  Google Scholar 

  26. Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, Salvidio G, Di Marzo V, Cavallo Perin P, Gruden G (2011) Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 60:2386–2396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hwang I, Lee J, Huh JY, Park J, Lee HB, Ho YS, Ha H (2012) Catalase deficiency accelerates diabetes renal injury through peroxisomal dysfunction. Diabetes 61:728–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Declèves AE, Mathew AV, Cundard R, Sharma K (2011) AMPK mediates the initiation of kidney disease induced by a high fat diet. J Am Soc Nephrol 22:1846–1855

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zivadeh FN, Wolf G (2008) Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 4:39–45

    Article  Google Scholar 

  30. Pisanti S, Picardi P, Prota L, Proto MC, Laezza C, McGuire PG, Morbidelli L, Gazzerro P, Ziche M, Das A et al (2011) Genetic and pharmacologic inactivation of cannabinoid CB1R receptor inhibits angiogenesis. Blood 117:5541–5550

    Article  CAS  PubMed  Google Scholar 

  31. Tedesco L, Valerio A, Dossena M, Cardile A, Ragni M, Pagano C, Pagotto U, Carruba MO, Vettor R, Nisoli E (2010) Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver: the role of eNOS, p38 MAPK, and AMPK pathways. Diabetes 59:2826–2836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Huang J, Siragy HM (2010) Regulation of (pro)rennin receptor expression by glucose-induced mitogen-activated protein kinase, nuclear factor-kappaB, and activator protein-1 signaling pathways. Endocrinology 151:3317–3325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Idris AI, Sophocleous A, Lando-Bassonga E, Canals M, Milligan G, Baker D, van’t Hof RJ, Ralston SH (2009) Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab 10:139–147

    Article  CAS  PubMed  Google Scholar 

  34. O’Sullivan SE (2007) Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors. Br J Pharmacol 152:576–582

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants NSC101-2314-B-115-MY3 from the National Science Council, NHRI-EX99-9942SI and NHRI-EX102-10140EI from the National Health Research Institute, and CMRPG6G0031 and CMRPG6B0401 from Chang Gung Memorial Hospital, Taiwan. The authors thank the Center for Laboratory Animals, Kaohsiung Chang Gung Memorial Hospital, for the use of their facilities.

Conflict of interest

The authors have nothing to disclose.

Open access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the sources are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Sheng Wang.

Additional information

Chun-Liang Lin, Yung-Chien Hsu, Chen-Chou Lei and Pei-Hsien Lee contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental data 3

Effect of high glucose on the level of phosphorylated p38 and phosphorylated JNK in mesangial cells. High glucose did not significantly change the levels of phosphorylated p38, p38, phosphorylated JNK or JNK in mesangial cells exposed to high glucose for 4–48 h. Data are expressed as mean ± SEM calculated from at least three experiments. (DOC 1122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CL., Hsu, YC., Lee, PH. et al. Cannabinoid receptor 1 disturbance of PPARγ2 augments hyperglycemia induction of mesangial inflammation and fibrosis in renal glomeruli. J Mol Med 92, 779–792 (2014). https://doi.org/10.1007/s00109-014-1125-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1125-6

Keywords

Navigation