Skip to main content
Log in

PiRNA pathway in the cardiovascular system: a novel regulator of cardiac differentiation, repair and regeneration

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Piwi-interacting RNAs (piRNAs) are a novel group of small non-coding RNA molecules with lengths of 21–35 nucleotides, first identified from the germline. PiRNAs and their associated PIWI clade Argonaute proteins constitute a key part of the piRNA pathway, with the best-known biological function to silence transposable elements in germ cells. The piRNA pathway, in fact, is not exclusive to the germline. Somatic functions of piRNAs have been recorded since their first discovery. To date, involvement of the piRNA pathway has been identified within the biological functions of genome rearrangement, epigenetic regulation, protein regulation in the germline and/or the soma transcriptionally or post-transcriptionally. Emerging evidence has shown that the piRNA pathway is essential for the normal function of the cardiovascular system and that its abnormal expression is correlated with cardiovascular dysfunction, although comprehensive roles of the piRNA pathway in the cardiovascular system and underlying mechanisms remain unclear. In this review, we discuss current findings of piRNA pathway expression in cardiac cell types and their potential functions in cardiac differentiation, repair and regeneration, thus providing new insights into cardiovascular disease development associated with the piRNA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD (2019) PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 20(2):89–108. https://doi.org/10.1038/s41576-018-0073-3

    Article  CAS  PubMed  Google Scholar 

  2. Nagano T, Fraser P (2011) No-nonsense functions for long noncoding RNAs. Cell 145(2):178–181. https://doi.org/10.1016/j.cell.2011.03.014

    Article  CAS  PubMed  Google Scholar 

  3. Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313(5785):320–324. https://doi.org/10.1126/science.1129333

    Article  CAS  PubMed  Google Scholar 

  4. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207. https://doi.org/10.1038/nature04916

    Article  CAS  PubMed  Google Scholar 

  5. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442(7099):199–202. https://doi.org/10.1038/nature04917

    Article  PubMed  Google Scholar 

  6. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (2006) Characterization of the piRNA complex from rat testes. Science 313(5785):363–367. https://doi.org/10.1126/science.1130164

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe T, Lin H (2014) Posttranscriptional regulation of gene expression by Piwi proteins and piRNAs. Mol Cell 56(1):18–27. https://doi.org/10.1016/j.molcel.2014.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirino Y, Mourelatos Z (2007) Mouse Piwi-interacting RNAs are 2’-O-methylated at their 3’ termini. Nat Struct Mol Biol 14(4):347–348. https://doi.org/10.1038/nsmb1218

    Article  CAS  PubMed  Google Scholar 

  9. Ohara T, Sakaguchi Y, Suzuki T, Ueda H, Miyauchi K, Suzuki T (2007) The 3’ termini of mouse Piwi-interacting RNAs are 2’-O-methylated. Nat Struct Mol Biol 14(4):349–350. https://doi.org/10.1038/nsmb1220

    Article  CAS  PubMed  Google Scholar 

  10. Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20(13):1709–1714. https://doi.org/10.1101/gad.1434406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ross RJ, Weiner MM, Lin H (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505(7483):353–359. https://doi.org/10.1038/nature12987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12(23):3715–3727. https://doi.org/10.1101/gad.12.23.3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Funayama N, Nakatsukasa M, Mohri K, Masuda Y, Agata K (2010) Piwi expression in archeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges. Evol Dev 12(3):275–287. https://doi.org/10.1111/j.1525-142X.2010.00413.x

    Article  CAS  PubMed  Google Scholar 

  14. Seipel K, Yanze N, Schmid V (2004) The germ line and somatic stem cell gene Cniwi in the jellyfish Podocoryne carnea. Int J Dev Biol 48(1):1–7. https://doi.org/10.1387/ijdb.15005568

    Article  CAS  PubMed  Google Scholar 

  15. Rinkevich Y, Rosner A, Rabinowitz C, Lapidot Z, Moiseeva E, Rinkevich B (2010) Piwi positive cells that line the vasculature epithelium, underlie whole body regeneration in a basal chordate. Dev Biol 345(1):94–104. https://doi.org/10.1016/j.ydbio.2010.05.500

    Article  CAS  PubMed  Google Scholar 

  16. Rinkevich Y, Voskoboynik A, Rosner A, Rabinowitz C, Paz G, Oren M, Douek J, Alfassi G, Moiseeva E, Ishizuka KJ, Palmeri KJ, Weissman IL, Rinkevich B (2013) Repeated, long-term cycling of putative stem cells between niches in a basal chordate. Dev Cell 24(1):76–88. https://doi.org/10.1016/j.devcel.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  17. Yan Z, Hu HY, Jiang X, Maierhofer V, Neb E, He L, Hu Y, Hu H, Li N, Chen W, Khaitovich P (2011) Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res 39(15):6596–6607. https://doi.org/10.1093/nar/gkr298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perera BPU, Tsai ZT, Colwell ML, Jones TR, Goodrich JM, Wang K, Sartor MA, Faulk C, Dolinoy DC (2019) Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics 14(5):504–521. https://doi.org/10.1080/15592294.2019.1600389

    Article  PubMed  PubMed Central  Google Scholar 

  19. Juliano C, Wang J, Lin H (2011) Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet 45:447–469. https://doi.org/10.1146/annurev-genet-110410-132541

    Article  CAS  PubMed  Google Scholar 

  20. Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C, Tuschl T, Kandel ER (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149(3):693–707. https://doi.org/10.1016/j.cell.2012.02.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim KW (2019) PIWI Proteins and piRNAs in the Nervous System. Mol Cells 42(12):828–835. https://doi.org/10.14348/molcells.2019.0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Czech B, Munafo M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ (2018) piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet 52:131–157. https://doi.org/10.1146/annurev-genet-120417-031441

    Article  CAS  PubMed  Google Scholar 

  23. Yamashiro H, Siomi MC (2018) PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 118(8):4404–4421. https://doi.org/10.1021/acs.chemrev.7b00393

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Dou M, Song X, Dong Y, Liu S, Liu H, Tao J, Li W, Yin X, Xu W (2019) The emerging role of the piRNA/piwi complex in cancer. Mol Cancer 18(1):123. https://doi.org/10.1186/s12943-019-1052-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bamezai S, Rawat VP, Buske C (2012) Concise review: The Piwi-piRNA axis: pivotal beyond transposon silencing. Stem Cells 30(12):2603–2611. https://doi.org/10.1002/stem.1237

    Article  CAS  PubMed  Google Scholar 

  26. Teixeira FK, Okuniewska M, Malone CD, Coux RX, Rio DC, Lehmann R (2017) piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 552(7684):268–272. https://doi.org/10.1038/nature25018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Costantino S, Libby P, Kishore R, Tardif JC, El-Osta A, Paneni F (2018) Epigenetics and precision medicine in cardiovascular patients: from basic concepts to the clinical arena. Eur Heart J 39(47):4150–4158. https://doi.org/10.1093/eurheartj/ehx568

    Article  CAS  PubMed  Google Scholar 

  28. Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571(7766):489–499. https://doi.org/10.1038/s41586-019-1411-0

    Article  CAS  PubMed  Google Scholar 

  29. Ramat A, Simonelig M (2021) Functions of PIWI Proteins in Gene Regulation: New Arrows Added to the piRNA Quiver. Trends Genet 37(2):188–200. https://doi.org/10.1016/j.tig.2020.08.011

    Article  CAS  PubMed  Google Scholar 

  30. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293(5532):1146–1150. https://doi.org/10.1126/science.1064023

    Article  CAS  PubMed  Google Scholar 

  31. Turchinovich A, Burwinkel B (2012) Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol 9(8):1066–1075. https://doi.org/10.4161/rna.21083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin H, Spradling AC (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124(12):2463–2476

    Article  CAS  PubMed  Google Scholar 

  33. Seto AG, Kingston RE, Lau NC (2007) The coming of age for Piwi proteins. Mol Cell 26(5):603–609. https://doi.org/10.1016/j.molcel.2007.05.021

    Article  CAS  PubMed  Google Scholar 

  34. Sasaki T, Shiohama A, Minoshima S, Shimizu N (2003) Identification of eight members of the Argonaute family in the human genome. Genomics 82(3):323–330. https://doi.org/10.1016/s0888-7543(03)00129-0

    Article  CAS  PubMed  Google Scholar 

  35. Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623. https://doi.org/10.1016/j.molcel.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  36. Tushir JS, Zamore PD, Zhang Z (2009) SnapShot: Fly piRNAs, PIWI proteins, and the ping-pong cycle. Cell 139(3):634-634 e631. https://doi.org/10.1016/j.cell.2009.10.021

    Article  PubMed  Google Scholar 

  37. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22–32. https://doi.org/10.1038/nrm2321

    Article  CAS  PubMed  Google Scholar 

  38. Lingel A, Simon B, Izaurralde E, Sattler M (2004) Nucleic acid 3’-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol 11(6):576–577. https://doi.org/10.1038/nsmb777

    Article  CAS  PubMed  Google Scholar 

  39. Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ (2005) Structural basis for 5’-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434(7033):666–670. https://doi.org/10.1038/nature03514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parker JS, Parizotto EA, Wang M, Roe SM, Barford D (2009) Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol Cell 33(2):204–214. https://doi.org/10.1016/j.molcel.2008.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21(9):743–753. https://doi.org/10.1038/nsmb.2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Simon B, Kirkpatrick JP, Eckhardt S, Reuter M, Rocha EA, Andrade-Navarro MA, Sehr P, Pillai RS, Carlomagno T (2011) Recognition of 2’-O-methylated 3’-end of piRNA by the PAZ domain of a Piwi protein. Structure 19(2):172–180. https://doi.org/10.1016/j.str.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  43. Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764. https://doi.org/10.1126/science.1146484

    Article  CAS  PubMed  Google Scholar 

  44. Di Giacomo M, Comazzetto S, Saini H, De Fazio S, Carrieri C, Morgan M, Vasiliauskaite L, Benes V, Enright AJ, O’Carroll D (2013) Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell 50(4):601–608. https://doi.org/10.1016/j.molcel.2013.04.026

    Article  CAS  PubMed  Google Scholar 

  45. Toth KF, Pezic D, Stuwe E, Webster A (2016) The piRNA Pathway Guards the Germline Genome Against Transposable Elements. Adv Exp Med Biol 886:51–77. https://doi.org/10.1007/978-94-017-7417-8_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Klenov MS, Lavrov SA, Stolyarenko AD, Ryazansky SS, Aravin AA, Tuschl T, Gvozdev VA (2007) Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Res 35(16):5430–5438. https://doi.org/10.1093/nar/gkm576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weick EM, Miska EA (2014) piRNAs: from biogenesis to function. Development 141(18):3458–3471. https://doi.org/10.1242/dev.094037

    Article  CAS  PubMed  Google Scholar 

  48. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, Hata K, Li E, Matsuda Y, Kimura T, Okabe M, Sakaki Y, Sasaki H, Nakano T (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22(7):908–917. https://doi.org/10.1101/gad.1640708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31(6):785–799. https://doi.org/10.1016/j.molcel.2008.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang X, Fejes Toth K, Aravin AA (2017) piRNA Biogenesis in Drosophila melanogaster. Trends Genet 33(11):882–894. https://doi.org/10.1016/j.tig.2017.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanism for repeat-associated siRNA 5’ end formation in Drosophila. Science 315(5818):1587–1590. https://doi.org/10.1126/science.1140494

    Article  CAS  PubMed  Google Scholar 

  52. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–1103. https://doi.org/10.1016/j.cell.2007.01.043

    Article  CAS  PubMed  Google Scholar 

  53. Schnettler E, Donald CL, Human S, Watson M, Siu RWC, McFarlane M, Fazakerley JK, Kohl A, Fragkoudis R (2013) Knockdown of piRNA pathway proteins results in enhanced Semliki Forest virus production in mosquito cells. J Gen Virol 94(Pt 7):1680–1689. https://doi.org/10.1099/vir.0.053850-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miesen P, Girardi E, van Rij RP (2015) Distinct sets of PIWI proteins produce arbovirus and transposon-derived piRNAs in Aedes aegypti mosquito cells. Nucleic Acids Res 43(13):6545–6556. https://doi.org/10.1093/nar/gkv590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li XZ, Roy CK, Dong X, Bolcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng Z, Zamore PD (2013) An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell 50(1):67–81. https://doi.org/10.1016/j.molcel.2013.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rojas-Rios P, Simonelig M (2018) piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development 145(17). https://doi.org/10.1242/dev.161786

  57. Gou LT, Dai P, Yang JH, Xue Y, Hu YP, Zhou Y, Kang JY, Wang X, Li H, Hua MM, Zhao S, Hu SD, Wu LG, Shi HJ, Li Y, Fu XD, Qu LH, Wang ED, Liu MF (2014) Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 24(6):680–700. https://doi.org/10.1038/cr.2014.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vourekas A, Zheng Q, Alexiou P, Maragkakis M, Kirino Y, Gregory BD, Mourelatos Z (2012) Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol 19(8):773–781. https://doi.org/10.1038/nsmb.2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Klattenhoff C, Theurkauf W (2008) Biogenesis and germline functions of piRNAs. Development 135(1):3–9. https://doi.org/10.1242/dev.006486

    Article  CAS  PubMed  Google Scholar 

  60. Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, Seitz H, Horwich MD, Syrzycka M, Honda BM, Kittler EL, Zapp ML, Klattenhoff C, Schulz N, Theurkauf WE, Weng Z, Zamore PD (2009) Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137(3):509–521. https://doi.org/10.1016/j.cell.2009.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, Hannon GJ (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137(3):522–535. https://doi.org/10.1016/j.cell.2009.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dong Y, Xu S, Liu J, Ponnusamy M, Zhao Y, Zhang Y, Wang Q, Li P, Wang K (2018) Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. Int J Biol Sci 14(9):1133–1141. https://doi.org/10.7150/ijbs.26215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Parhad SS, Theurkauf WE (2019) Rapid evolution and conserved function of the piRNA pathway. Open Biol 9(1):180181. https://doi.org/10.1098/rsob.180181

    Article  CAS  PubMed  Google Scholar 

  64. Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127(6):1193–1207. https://doi.org/10.1016/j.cell.2006.10.040

    Article  CAS  PubMed  Google Scholar 

  65. Mohn F, Sienski G, Handler D, Brennecke J (2014) The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell 157(6):1364–1379. https://doi.org/10.1016/j.cell.2014.04.031

    Article  CAS  PubMed  Google Scholar 

  66. Fu Y, Yang Y, Zhang H, Farley G, Wang J, Quarles KA, Weng Z, Zamore PD (2018) The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. Elife 7.https://doi.org/10.7554/eLife.31628

  67. Gainetdinov I, Colpan C, Arif A, Cecchini K, Zamore PD (2018) A Single Mechanism of Biogenesis, Initiated and Directed by PIWI Proteins, Explains piRNA Production in Most Animals. Mol Cell 71(5):775-790 e775. https://doi.org/10.1016/j.molcel.2018.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gu W, Lee HC, Chaves D, Youngman EM, Pazour GJ, Conte D Jr, Mello CC (2012) CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 151(7):1488–1500. https://doi.org/10.1016/j.cell.2012.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Han BW, Wang W, Li C, Weng Z, Zamore PD (2015) Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348(6236):817–821. https://doi.org/10.1126/science.aaa1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tang W, Tu S, Lee HC, Weng Z, Mello CC (2016) The RNase PARN-1 Trims piRNA 3’ Ends to Promote Transcriptome Surveillance in C. elegans. Cell 164(5):974–984. https://doi.org/10.1016/j.cell.2016.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang Y, Guo R, Cui Y, Zhu Z, Zhang Y, Wu H, Zheng B, Yue Q, Bai S, Zeng W, Guo X, Zhou Z, Shen B, Zheng K, Liu M, Ye L, Sha J (2017) An essential role for PNLDC1 in piRNA 3’ end trimming and male fertility in mice. Cell Res 27(11):1392–1396. https://doi.org/10.1038/cr.2017.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ding D, Liu J, Dong K, Midic U, Hess RA, Xie H, Demireva EY, Chen C (2017) PNLDC1 is essential for piRNA 3’ end trimming and transposon silencing during spermatogenesis in mice. Nat Commun 8(1):819. https://doi.org/10.1038/s41467-017-00854-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nishimura T, Nagamori I, Nakatani T, Izumi N, Tomari Y, Kuramochi-Miyagawa S, Nakano T (2018) PNLDC1, mouse pre-piRNA Trimmer, is required for meiotic and post-meiotic male germ cell development. EMBO Rep 19(3). https://doi.org/10.15252/embr.201744957

  74. Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129(1):69–82. https://doi.org/10.1016/j.cell.2007.03.026

    Article  CAS  PubMed  Google Scholar 

  75. Saito K, Sakaguchi Y, Suzuki T, Suzuki T, Siomi H, Siomi MC (2007) Pimet, the Drosophila homolog of HEN1, mediates 2’-O-methylation of Piwi- interacting RNAs at their 3’ ends. Genes Dev 21(13):1603–1608. https://doi.org/10.1101/gad.1563607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Montgomery TA, Rim YS, Zhang C, Dowen RH, Phillips CM, Fischer SE, Ruvkun G (2012) PIWI associated siRNAs and piRNAs specifically require the Caenorhabditis elegans HEN1 ortholog henn-1. PLoS Genet 8(4):e1002616. https://doi.org/10.1371/journal.pgen.1002616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kirino Y, Mourelatos Z (2007) The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. RNA 13(9):1397–1401. https://doi.org/10.1261/rna.659307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling AL, Bergmann M, Goodnow CC, Ormandy CJ, Wong L, Mann J, Scott HS, Jamsai D, Adelson DL, O’Bryan MK (2015) HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse. PLoS Genet 11(10):e1005620. https://doi.org/10.1371/journal.pgen.1005620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Billi AC, Alessi AF, Khivansara V, Han T, Freeberg M, Mitani S, Kim JK (2012) The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs. PLoS Genet 8(4):e1002617. https://doi.org/10.1371/journal.pgen.1002617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kamminga LM, Luteijn MJ, den Broeder MJ, Redl S, Kaaij LJ, Roovers EF, Ladurner P, Berezikov E, Ketting RF (2010) Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J 29(21):3688–3700. https://doi.org/10.1038/emboj.2010.233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ninova M, Griffiths-Jones S, Ronshaugen M (2017) Abundant expression of somatic transposon-derived piRNAs throughout Tribolium castaneum embryogenesis. Genome Biol 18(1):184. https://doi.org/10.1186/s13059-017-1304-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322(5906):1387–1392. https://doi.org/10.1126/science.1165171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S, Blower MD, Lai EC (2009) A broadly conserved pathway generates 3’UTR-directed primary piRNAs. Curr Biol 19(24):2066–2076. https://doi.org/10.1016/j.cub.2009.11.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamtich J, Heo SJ, Dhahbi J, Martin DI, Boffelli D (2015) piRNA-like small RNAs mark extended 3’UTRs present in germ and somatic cells. BMC Genomics 16:462. https://doi.org/10.1186/s12864-015-1662-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barrenada O, Fernandez-Perez D, Larriba E, Brieno-Enriquez M, Del Mazo J (2020) Diversification of piRNAs expressed in PGCs and somatic cells during embryonic gonadal development. RNA Biol 1–15. https://doi.org/10.1080/15476286.2020.1757908

  86. Ray R, Pandey P (2018) piRNA analysis framework from small RNA-Seq data by a novel cluster prediction tool - PILFER. Genomics 110(6):355–365. https://doi.org/10.1016/j.ygeno.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  87. Rajan KS, Ramasamy S, George-William JN, Rajendhran J (2017) Emerging cardiac non-coding landscape: The importance of meta-analysis. Biochimie 133:87–94. https://doi.org/10.1016/j.biochi.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  88. Rosenkranz D, Zischler H (2012) proTRAC–a software for probabilistic piRNA cluster detection, visualization and analysis. BMC Bioinformatics 13:5. https://doi.org/10.1186/1471-2105-13-5

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rajan KS, Velmurugan G, Gopal P, Ramprasath T, Babu DD, Krithika S, Jenifer YC, Freddy A, William GJ, Kalpana K, Ramasamy S (2016) Abundant and Altered Expression of PIWI-Interacting RNAs during Cardiac Hypertrophy. Heart Lung Circ 25(10):1013–1020. https://doi.org/10.1016/j.hlc.2016.02.015

    Article  PubMed  Google Scholar 

  90. Wu WS, Brown JS, Chen TT, Chu YH, Huang WC, Tu S, Lee HC (2019) piRTarBase: a database of piRNA targeting sites and their roles in gene regulation. Nucleic Acids Res 47(D1):D181–D187. https://doi.org/10.1093/nar/gky956

    Article  CAS  PubMed  Google Scholar 

  91. Zhang P, Si X, Skogerbo G, Wang J, Cui D, Li Y, Sun X, Liu L, Sun B, Chen R, He S, Huang DW (2014) piRBase: a web resource assisting piRNA functional study. Database (Oxford) 2014:bau110. https://doi.org/10.1093/database/bau110

  92. Huang S, Ichikawa Y, Igarashi Y, Yoshitake K, Kinoshita S, Omori F, Maeyama K, Nagai K, Watabe S, Asakawa S (2019) Piwi-interacting RNA (piRNA) expression patterns in pearl oyster (Pinctada fucata) somatic tissues. Sci Rep 9(1):247. https://doi.org/10.1038/s41598-018-36726-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. La Greca A, Scarafia MA, Hernandez Canas MC, Perez N, Castaneda S, Colli C, Mobbs AM, Santin Velazque NL, Neiman G, Garate X, Aban C, Waisman A, Moro LN, Sevlever G, Luzzani C, Miriuka SG (2020) PIWI-interacting RNAs are differentially expressed during cardiac differentiation of human pluripotent stem cells. PLoS ONE 15(5):e0232715. https://doi.org/10.1371/journal.pone.0232715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klenov MS, Sokolova OA, Yakushev EY, Stolyarenko AD, Mikhaleva EA, Lavrov SA, Gvozdev VA (2011) Separation of stem cell maintenance and transposon silencing functions of Piwi protein. Proc Natl Acad Sci U S A 108(46):18760–18765. https://doi.org/10.1073/pnas.1106676108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jung I, Park JC, Kim S (2014) piClust: a density based piRNA clustering algorithm. Comput Biol Chem 50:60–67. https://doi.org/10.1016/j.compbiolchem.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  96. Wu WS, Huang WC, Brown JS, Zhang D, Song X, Chen H, Tu S, Weng Z, Lee HC (2018) pirScan: a webserver to predict piRNA targeting sites and to avoid transgene silencing in C. elegans. Nucleic Acids Res 46(W1):W43–W48. https://doi.org/10.1093/nar/gky277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Uhrig S, Klein H (2019) PingPongPro: a tool for the detection of piRNA-mediated transposon-silencing in small RNA-Seq data. Bioinformatics 35(2):335–336. https://doi.org/10.1093/bioinformatics/bty578

    Article  CAS  PubMed  Google Scholar 

  98. Sai Lakshmi S, Agrawal S (2008) piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res 36 (Database issue):D173–177. https://doi.org/10.1093/nar/gkm696

  99. Rosenkranz D (2016) piRNA cluster database: a web resource for piRNA producing loci. Nucleic Acids Res 44(D1):D223-230. https://doi.org/10.1093/nar/gkv1265

    Article  CAS  PubMed  Google Scholar 

  100. Wang J, Zhang P, Lu Y, Li Y, Zheng Y, Kan Y, Chen R, He S (2019) piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res 47(D1):D175–D180. https://doi.org/10.1093/nar/gky1043

    Article  CAS  PubMed  Google Scholar 

  101. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25(1):1–47. https://doi.org/10.1016/s0022-5193(69)80016-0

    Article  CAS  PubMed  Google Scholar 

  102. Ursprung H, Huang RC (1967) Genes and cellular differentiation. Prog Biophys Mol Biol 17:149–177. https://doi.org/10.1016/0079-6107(67)90006-5

    Article  CAS  PubMed  Google Scholar 

  103. Mohn F, Schubeler D (2009) Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet 25(3):129–136. https://doi.org/10.1016/j.tig.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  104. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21. https://doi.org/10.1038/nrg3606

    Article  CAS  PubMed  Google Scholar 

  105. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20(1):21–37. https://doi.org/10.1038/s41580-018-0045-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rangan P, Malone CD, Navarro C, Newbold SP, Hayes PS, Sachidanandam R, Hannon GJ, Lehmann R (2011) piRNA production requires heterochromatin formation in Drosophila. Curr Biol 21(16):1373–1379. https://doi.org/10.1016/j.cub.2011.06.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pillai RS, Chuma S (2012) piRNAs and their involvement in male germline development in mice. Dev Growth Differ 54(1):78–92. https://doi.org/10.1111/j.1440-169X.2011.01320.x

    Article  CAS  PubMed  Google Scholar 

  108. Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10(1):16–28. https://doi.org/10.1016/j.stem.2011.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8(1):162–175. https://doi.org/10.1038/nprot.2012.150

    Article  CAS  PubMed  Google Scholar 

  110. Li Y, Zeng A, Li G, Guan YN, Yang HT, Shen B, Jing Q (2017) Dynamic regulation of small RNAome during the early stage of cardiac differentiation from pluripotent embryonic stem cells. Genom Data 12:136–145. https://doi.org/10.1016/j.gdata.2017.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  111. van Berlo JH, Molkentin JD (2014) An emerging consensus on cardiac regeneration. Nat Med 20(12):1386–1393. https://doi.org/10.1038/nm.3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ibrahim AGE, Li C, Rogers R, Fournier M, Li L, Vaturi SD, Antes T, Sanchez L, Akhmerov A, Moseley JJ, Tobin B, Rodriguez-Borlado L, Smith RR, Marban L, Marban E (2019) Augmenting canonical Wnt signalling in therapeutically inert cells converts them into therapeutically potent exosome factories. Nat Biomed Eng 3(9):695–705. https://doi.org/10.1038/s41551-019-0448-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, Marban E (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106(5):971–980. https://doi.org/10.1161/CIRCRESAHA.109.210682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vella S, Gallo A, Lo Nigro A, Galvagno D, Raffa GM, Pilato M, Conaldi PG (2016) PIWI-interacting RNA (piRNA) signatures in human cardiac progenitor cells. Int J Biochem Cell Biol 76:1–11. https://doi.org/10.1016/j.biocel.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  115. Lucchinetti E, Feng J, Silva R, Tolstonog GV, Schaub MC, Schumann GG, Zaugg M (2006) Inhibition of LINE-1 expression in the heart decreases ischemic damage by activation of Akt/PKB signaling. Physiol Genomics 25(2):314–324. https://doi.org/10.1152/physiolgenomics.00251.2005

    Article  CAS  PubMed  Google Scholar 

  116. Shiojima I, Walsh K (2006) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20(24):3347–3365. https://doi.org/10.1101/gad.1492806

    Article  CAS  PubMed  Google Scholar 

  117. Rajan KS, Velmurugan G, Pandi G, Ramasamy S (2014) miRNA and piRNA mediated Akt pathway in heart: antisense expands to survive. Int J Biochem Cell Biol 55:153–156. https://doi.org/10.1016/j.biocel.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  118. Rajan KS, Ramasamy S (2014) Retrotransposons and piRNA: the missing link in central nervous system. Neurochem Int 77:94–102. https://doi.org/10.1016/j.neuint.2014.05.017

    Article  CAS  PubMed  Google Scholar 

  119. Barnes R (1982). Invertebrate Zoology 14

  120. Rinkevich Y, Paz G, Rinkevich B, Reshef R (2007) Systemic bud induction and retinoic acid signaling underlie whole body regeneration in the urochordate Botrylloides leachi. PLoS Biol 5(4):e71. https://doi.org/10.1371/journal.pbio.0050071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gore-Panter SR, Hsu J, Barnard J, Moravec CS, Van Wagoner DR, Chung MK, Smith JD (2016) PANCR, the PITX2 Adjacent Noncoding RNA, Is Expressed in Human Left Atria and Regulates PITX2c Expression. Circ Arrhythm Electrophysiol 9(1):e003197. https://doi.org/10.1161/CIRCEP.115.003197

    Article  CAS  PubMed  Google Scholar 

  122. Cannon RO 3rd, Rosing DR, Maron BJ, Leon MB, Bonow RO, Watson RM, Epstein SE (1985) Myocardial ischemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation 71(2):234–243. https://doi.org/10.1161/01.cir.71.2.234

    Article  PubMed  Google Scholar 

  123. Dickhout JG, Carlisle RE, Austin RC (2011) Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circ Res 108(5):629–642. https://doi.org/10.1161/CIRCRESAHA.110.226803

    Article  CAS  PubMed  Google Scholar 

  124. Yang J, Xue FT, Li YY, Liu W, Zhang S (2018) Exosomal piRNA sequencing reveals differences between heart failure and healthy patients. Eur Rev Med Pharmacol Sci 22(22):7952–7961. https://doi.org/10.26355/eurrev_201811_16423

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YZ researched the published data and contributed to writing of this manuscript draft; YF improved the structure of this work and contributed to the final manuscript draft; CD was involved in the original idea formation of this literature review, as well as manuscript draft polishing; YW conceived the original idea to summarize piRNAs in the cardiovascular system and contributed significantly to the final manuscript draft.

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

No conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Fang, Y., Dai, C. et al. PiRNA pathway in the cardiovascular system: a novel regulator of cardiac differentiation, repair and regeneration. J Mol Med 99, 1681–1690 (2021). https://doi.org/10.1007/s00109-021-02132-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02132-9

Keywords

Navigation