Skip to main content
Log in

Three-dimensional shape optimization of hip prostheses using a multicriteria formulation

  • Medical and Bioengineering Applications
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A multicriteria optimization model is developed to obtain the optimal geometry of the femoral component of a hip prosthesis. The objective function minimizes both the relative tangential displacement and the contact normal stress. For cementless stems, these two factors are relevant for the prosthesis stability and therefore for the implant success. The three-dimensional optimization procedure developed allows us to characterize the stem shape that minimizes displacement and stress individually, or simultaneously using a multicriteria approach. Design variables characterize successive stem sections, and are subjected to linear geometric constraints to obtain clinically admissible geometries. Multiple loads are considered to incorporate several daily life activities. The system bone–stem is considered a structure in equilibrium with contact condition on the interface. Results show that thin stem tips minimize the interface stress while collared stems minimize displacement. The multicriteria formulation leads to balanced solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABAQUS (2003) ABAQUS, version 6.4. HKS, RI, USA

  • Bernakiewicz M, Viceconti M, Toni A (1999) Investigation of the influence of periprosthetic fibrous tissue on the primary stability of uncemented hip prostheses. In: Middleton J, Jones ML, Shrive NG, Pande GN (eds) Computer methods in biomechanics & biomedical engineering—3. Gordon and Breach, NY, USA, pp 21–26

    Google Scholar 

  • Bruyneel M, Duysinx P, Fleury C (2002) A family of MMA approximations for structural optimization. Struct Multidiscipl Optim 24:263–276

    Article  Google Scholar 

  • Dorr LD, Wan Z (1996) Comparative results of a distal modular sleeve, circumferential coating, and stiffness relief using the anatomic porous replacement II. J Arthroplast 11(4):419–428

    Article  Google Scholar 

  • Fernandes PR, Rodrigues H, Jacobs C (1999) A model of bone adaptation using a global optimization criterion based on the trajectorial theory of Wolff. Comput Methods Biomech Biomed Eng 2:125–138

    Article  Google Scholar 

  • Fernandes PR, Folgado J, Jacobs C, Pellegrini V (2002) A contact model with ingrowth control for bone remodelling around cementless stems. J Biomech 35:167–176

    Article  Google Scholar 

  • Fernandes PR, Folgado J, Ruben RB (2004) Shape optimization of a cementless hip stem for a minimum of interface stress and displacement. Comput Methods Biomech Biomed Eng 7(1):51–61

    Article  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • García JM, Doblaré M, Cegoñino J (2002) Bone remodelling simulation: a tool for implant design. Comput Mater Sci 25:110–114

    Article  Google Scholar 

  • Herzwurm PJ, Simpson S, Duffin S, Oswald SG, Ebert FR (1997) Thigh pain and total hip arthroplasty. Clin Orthop Relat Res 336:156–161

    Article  Google Scholar 

  • Huiskes R, Boeklagen R (1989) Mathematical shape optimization of hip prosthesis design. J Biomech 22:793–804

    Article  Google Scholar 

  • Huo MH, Martin RP, Zatorski LE, Keggi KJ (1995) Total hip arthroplasty using Zweymuller stem implant without cement. J Arthroplast 10(6):793–799

    Article  Google Scholar 

  • Katoozian H, Davy DT (2000) Effects of loading conditions and objective function on three-dimensional shape optimization of femoral components of hip endoprostheses. Med Eng Phys 22:243–251

    Article  Google Scholar 

  • Keaveny T, Bartel D (1993) Effects of porous coating, with and without collar support, on early relative motion for a cementless hip prosthesis. J Biomech 26(12):1355–1368

    Article  Google Scholar 

  • Kowalczyk P (2001) Design optimization of cementless femoral hip prostheses using finite element analysis. J Biomech Eng 123:396–402

    Article  Google Scholar 

  • Kuiper JH (1993) Numerical optimization of artificial joint designs. Ph.D. thesis, Katholieke Universiteit Nijmegen

  • Luenberger DG (1989) Linear and nonlinear programming, 2nd edn. Addison-Wesley, Reading, MA

    Google Scholar 

  • Mandell JA, Carter DR, Goodman SB, Shurman DJ, Beaupré GS (2004) A conical-collared intramedullary stem can improve stress transfer and limit micromotion. Clin Biomech 19:695–703

    Article  Google Scholar 

  • Osyczka A (1992) Computer aided multicriterion optimization system (CAMOS) software package in Fortran. International Software Publishers, Cracow, Poland

    Google Scholar 

  • Rancourt D, Shirazi-Adl A, Drouin G, Paiment G (1990) Friction properties of interface between porous-surfaced metals and tibial cancellous bone. J Biomed Materi Res 24:1503–1519

    Article  Google Scholar 

  • Romagnoli S (2002) Press-fit hip arthroplasty, a European alternative. J Arthroplast 17(4 Suppl 1):108–112

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MATH  Google Scholar 

  • Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Olhoff N, Rozvany GIN (eds) First world congress of structural and multidisciplinary optimization. Pergamon, Oxford, pp 9–16

    Google Scholar 

  • Swanson TV (2005) The tapered press fit total hip arthroplasty. J Arthroplast 20(4 Suppl 2):63–67

    Article  Google Scholar 

  • Viceconti M, Casali M, Massari B, Cristofolini L, Bassani S, Toni A (1996) The ‘standardized femur program’ proposal for a reference geometry to be used for the creation of finite element methods of the femur. J Biomech 29:1241

    Article  Google Scholar 

  • Viceconti M, Monti L, Muccini R, Bernakiewicz M, Toni A (2001) Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems. Clin Biomech 16:765–775

    Article  Google Scholar 

  • Yoon YS, Jang GH, Kim YY (1989) Shape optimal design of the stem of a cemented hip prosthesis to minimize stress concentration in the cement layer. J Biomech 22:1279–1284

    Article  Google Scholar 

  • Zuo KT, Chen LP, Zhang YQ, Yang J (2005) A hybrid topology optimization algorithm for structural design. Eng Optim 37(8):849–866

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo R. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruben, R.B., Folgado, J. & Fernandes, P.R. Three-dimensional shape optimization of hip prostheses using a multicriteria formulation. Struct Multidisc Optim 34, 261–275 (2007). https://doi.org/10.1007/s00158-006-0072-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-006-0072-4

Keywords

Navigation