Skip to main content
Log in

The function of alpha-2-adrenoceptors in the rat locus coeruleus is preserved in the chronic constriction injury model of neuropathic pain

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Peripheral neuropathic pain is a chronic condition that may produce plastic changes in several brain regions. The noradrenergic locus coeruleus (LC) is a crucial component of ascending and descending pain pathways, both of which are frequently compromised after nerve injury.

Objectives

The objective of the study was to examine whether chronic constriction injury (CCI), a model of neuropathic pain, alters noradrenergic activity in the rat LC.

Methods

Activity in the LC was assessed by electrophysiology and microdialysis, while protein expression was monitored in western blots and by immunohistochemistry.

Results

The pain threshold had dropped in injured rats 7 days after inducing neuropathy. While alpha-2-adrenoceptors mediate activity in the LC and in its terminal areas, no alterations in either spontaneous neuronal activity or extracellular noradrenaline levels were observed following CCI. Moreover, alpha-2-adrenoceptor activity in the LC of CCI rats remained unchanged after systemic administration of UK14,304, RX821002 or desipramine. Accordingly, extracellular noradrenaline levels in the LC were similar in CCI and control animals following local administration of clonidine or RX821002. In addition, there were no changes in the expression of the alpha-2-adrenoceptors, Gαi/z subunits or the regulators of G-protein signaling. However, pERK1/2 (phosphorylated extracellular signal-regulated kinases 1/2) expression augmented in the spinal cord, paragigantocellularis nucleus (PGi) and dorsal raphe nucleus (DRN) following CCI.

Conclusions

Neuropathic pain is not accompanied by modifications in tonic LC activity after the onset of pain. This may indicate that the signals from the PGi and DRN, the excitatory and inhibitory afferents of the LC, cancel one another out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aston-Jones G, Bloom FE (1981) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1:887–900

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234:734–737

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Akaoka H, Charlety P, Chouvet G (1991a) Serotonin selectively attenuates glutamate-evoked activation of noradrenergic locus coeruleus neurons. J Neurosci 11:760–769

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Shipley MT, Chouvet G, Ennis M, van Bockstaele E, Pieribone V, Shiekhattar R, Akaoka H, Drolet G, Astier B et al (1991b) Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog Brain Res 88:47–75

    Article  PubMed  CAS  Google Scholar 

  • Azami J, Wright DM, Roberts MH (1981) Effects of morphine and naloxone on the responses to noxious stimulation of neurones in the nucleus reticularis paragigantocellularis. Neuropharmacology 20:869–876

    Article  PubMed  CAS  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    Article  PubMed  CAS  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  CAS  Google Scholar 

  • Berrocoso E, Mico JA, Ugedo L (2006) In vivo effect of tramadol on locus coeruleus neurons is mediated by alpha2-adrenoceptors and modulated by serotonin. Neuropharmacology 51:146–153

    Article  PubMed  CAS  Google Scholar 

  • Berrocoso E, De Benito MD, Mico JA (2007) Role of serotonin 5-HT1A and opioid receptors in the antiallodynic effect of tramadol in the chronic constriction injury model of neuropathic pain in rats. Psychopharmacology (Berl) 193:97–105

    Article  CAS  Google Scholar 

  • Bricca G, Zhang J, Greney H, Dontenwill M, Stutzmann J, Belcourt A, Bousquet P (1993) Relevance of the use of [3H]-clonidine to identify imidazoline receptors in the rabbit brainstem. Br J Pharmacol 110:1537–1543

    PubMed  CAS  Google Scholar 

  • Brightwell JJ, Taylor BK (2009) Noradrenergic neurons in the locus coeruleus contribute to neuropathic pain. Neuroscience 160:174–185

    Article  PubMed  CAS  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1976) Noradrenergic neurons of the locus coeruleus: inhibition by epinephrine and activation by the alpha-antagonist piperoxane. Brain Res 112:413–419

    Article  PubMed  CAS  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1978) Activation of locus coeruleus neurons by peripheral stimuli: modulation by a collateral inhibitory mechanism. Life Sci 23:1383–1392

    Article  PubMed  CAS  Google Scholar 

  • Chapman V, Suzuki R, Dickenson AH (1998) Electrophysiological characterization of spinal neuronal response properties in anaesthetized rats after ligation of spinal nerves L5-L6. J Physiol 507(Pt 3):881–894

    Article  PubMed  CAS  Google Scholar 

  • Chen SR, Chen H, Yuan WX, Pan HL (2011) Increased presynaptic and postsynaptic {alpha}2-adrenoceptor activity in the spinal dorsal horn in painful diabetic neuropathy. J Pharmacol Exp Ther 337:285–292

    Article  PubMed  CAS  Google Scholar 

  • Cruz CD, Neto FL, Castro-Lopes J, McMahon SB, Cruz F (2005) Inhibition of ERK phosphorylation decreases nociceptive behaviour in monoarthritic rats. Pain 116:411–419

    Article  PubMed  CAS  Google Scholar 

  • Dong WQ, Qiao JT, Skolnick M, Dafny N (1991) Focal dorsal raphe stimulation and pinnal electrical stimulation modulate spontaneous and noxious evoked responses in thalamic neurons. Int J Neurosci 57:123–140

    Article  PubMed  CAS  Google Scholar 

  • Elam M, Svensson TH, Thoren P (1986) Locus coeruleus neurons and sympathetic nerves: activation by cutaneous sensory afferents. Brain Res 366:254–261

    Article  PubMed  CAS  Google Scholar 

  • Ennis M, Aston-Jones G, Shiekhattar R (1992) Activation of locus coeruleus neurons by nucleus paragigantocellularis or noxious sensory stimulation is mediated by intracoerulear excitatory amino acid neurotransmission. Brain Res 598:185–195

    Article  PubMed  CAS  Google Scholar 

  • Ernsberger P, Shen IH (1997) Membrane localization and guanine nucleotide sensitivity of medullary I1-imidazoline binding sites. Neurochem Int 30:17–23

    Article  PubMed  CAS  Google Scholar 

  • Ernsberger P, Graves ME, Graff LM, Zakieh N, Nguyen P, Collins LA, Westbrooks KL, Johnson GG (1995) I1-imidazoline receptors. Definition, characterization, distribution, and transmembrane signaling. Ann N Y Acad Sci 763:22–42

    Article  PubMed  CAS  Google Scholar 

  • Ferrari F, Fiorentino S, Mennuni L, Garofalo P, Letari O, Mandelli S, Giordani A, Lanza M, Caselli G (2011) Analgesic efficacy of CR4056, a novel imidazoline-2 receptor ligand, in rat models of inflammatory and neuropathic pain. J Pain Res 4:111–125

    PubMed  CAS  Google Scholar 

  • Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Sanchez-Blazquez P (2005a) Activation of mu-opioid receptors transfers control of Galpha subunits to the regulator of G-protein signaling RGS9-2: role in receptor desensitization. J Biol Chem 280:8951–8960

    Article  PubMed  CAS  Google Scholar 

  • Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Sanchez-Blazquez P (2005b) The RGSZ2 protein exists in a complex with mu-opioid receptors and regulates the desensitizing capacity of Gz proteins. Neuropsychopharmacology 30:1632–1648

    Article  PubMed  CAS  Google Scholar 

  • Georges F, Aston-Jones G (2003) Prolonged activation of mesolimbic dopaminergic neurons by morphine withdrawal following clonidine: participation of imidazoline and norepinephrine receptors. Neuropsychopharmacology 28:1140–1149

    PubMed  CAS  Google Scholar 

  • Georges F, Caille S, Vouillac C, Le Moine C, Stinus L (2005) Role of imidazoline receptors in the anti-aversive properties of clonidine during opiate withdrawal in rats. Eur J Neurosci 22:1812–1816

    Article  PubMed  CAS  Google Scholar 

  • Gilsbach R, Hein L (2008) Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol: 261–88

  • Hajos M, Engberg G, Elam M (1986) Reduced responsiveness of locus coeruleus neurons to cutaneous thermal stimuli in capsaicin-treated rats. Neurosci Lett 70:382–387

    Article  PubMed  CAS  Google Scholar 

  • Hayashida K, Obata H, Nakajima K, Eisenach JC (2008) Gabapentin acts within the locus coeruleus to alleviate neuropathic pain. Anesthesiology 109:1077–1084

    Article  PubMed  CAS  Google Scholar 

  • Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559

    Article  PubMed  CAS  Google Scholar 

  • Holmberg M, Fagerholm V, Scheinin M (2003) Regional distribution of alpha(2C)-adrenoceptors in brain and spinal cord of control mice and transgenic mice overexpressing the alpha(2C)-subtype: an autoradiographic study with [(3)H]RX821002 and [(3)H]rauwolscine. Neuroscience 117:875–898

    Article  PubMed  CAS  Google Scholar 

  • Jaggi AS, Singh N (2011) Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res 1381:187–201

    Article  PubMed  CAS  Google Scholar 

  • Jeanmonod D, Magnin M, Morel A (1993) Thalamus and neurogenic pain: physiological, anatomical and clinical data. Neuroreport 4:475–478

    Article  PubMed  CAS  Google Scholar 

  • Jedema HP, Gold SJ, Gonzalez-Burgos G, Sved AF, Tobe BJ, Wensel T, Grace AA (2008) Chronic cold exposure increases RGS7 expression and decreases alpha(2)-autoreceptor-mediated inhibition of noradrenergic locus coeruleus neurons. Eur J Neurosci 27:2433–2443

    Article  PubMed  Google Scholar 

  • Ji RR, Gereau RWt, Malcangio M, Strichartz GR (2009) MAP kinase and pain. Brain Res Rev 60:135–148

    Article  PubMed  CAS  Google Scholar 

  • Jones SL (1991) Descending noradrenergic influences on pain. Prog Brain Res 88:381–394

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, Befort K, Woolf CJ, Ji RR (2004) Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 24:8310–8321

    Article  PubMed  CAS  Google Scholar 

  • Kim MA, Lee HS, Lee BY, Waterhouse BD (2004) Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Res 1026:56–67

    Article  PubMed  CAS  Google Scholar 

  • Korf J, Aghajanian GK, Roth RH (1973) Increased turnover of norepinephrine in the rat cerebral cortex during stress: role of the locus coeruleus. Neuropharmacology 12:933–938

    Article  PubMed  CAS  Google Scholar 

  • Li JX, Zhang Y (2011) Imidazoline I2 receptors: target for new analgesics? Eur J Pharmacol 658:49–56

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Eisenach JC (2003) Chronic constriction injury of sciatic nerve induces the up-regulation of descending inhibitory noradrenergic innervation to the lumbar dorsal horn of mice. Brain Res 970:110–118

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Mayer DJ, Price DD (1993) Patterns of increased brain activity indicative of pain in a rat model of peripheral mononeuropathy. J Neurosci 13:2689–2702

    PubMed  CAS  Google Scholar 

  • Martin-Gomez JI, Ruiz J, Barrondo S, Callado LF, Meana JJ (2005) Opposite changes in imidazoline I2 receptors and alpha2-adrenoceptors density in rat frontal cortex after induced gliosis. Life Sci 78:205–209

    Article  PubMed  CAS  Google Scholar 

  • Mateo Y, Fernandez-Pastor B, Meana JJ (2001) Acute and chronic effects of desipramine and clorgyline on alpha(2)-adrenoceptors regulating noradrenergic transmission in the rat brain: a dual-probe microdialysis study. Br J Pharmacol 133:1362–1370

    Article  PubMed  CAS  Google Scholar 

  • Meana JJ, Herrera-Marschitz M, Goiny M, Silveira R (1997) Modulation of catecholamine release by alpha 2-adrenoceptors and I1-imidazoline receptors in rat brain. Brain Res 744:216–226

    Article  PubMed  CAS  Google Scholar 

  • Molander C, Xu Q, Grant G (1984) The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 230:133–141

    Article  PubMed  CAS  Google Scholar 

  • Obata H, Li X, Eisenach JC (2005) alpha2-Adrenoceptor activation by clonidine enhances stimulation-evoked acetylcholine release from spinal cord tissue after nerve ligation in rats. Anesthesiology 102:657–662

    Article  PubMed  CAS  Google Scholar 

  • Omiya Y, Yuzurihara M, Suzuki Y, Kase Y, Kono T (2008) Role of alpha2-adrenoceptors in enhancement of antinociceptive effect in diabetic mice. Eur J Pharmacol 592:62–66

    Article  PubMed  CAS  Google Scholar 

  • Ortega JE, Fernandez-Pastor B, Callado LF, Meana JJ (2010) In vivo potentiation of reboxetine and citalopram effect on extracellular noradrenaline in rat brain by alpha(2)-adrenoceptor antagonism. Eur Neuropsychopharmacol 20:813–822

    Article  PubMed  CAS  Google Scholar 

  • Palazzo E, de Novellis V, Petrosino S, Marabese I, Vita D, Giordano C, Di Marzo V, Mangoni GS, Rossi F, Maione S (2006) Neuropathic pain and the endocannabinoid system in the dorsal raphe: pharmacological treatment and interactions with the serotonergic system. Eur J Neurosci 24:2011–2020

    Article  PubMed  Google Scholar 

  • Parini A, Moudanos CG, Pizzinat N, Lanier SM (1996) The elusive family of imidazoline binding sites. Trends Pharmacol Sci 17:13–16

    Article  PubMed  CAS  Google Scholar 

  • Parker RB, Waud DR (1971) Pharmacological estimation of drug-receptor dissociation constants. Statistical evaluation. I. Agonists. J Pharmacol Exp Ther 177:1–12

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2009) The rat brain in stereotaxc coordinates. Academic, San Diego

    Google Scholar 

  • Pertovaara A, Hamalainen MM (1994) Spinal potentiation and supraspinal additivity in the antinociceptive interaction between systemically administered alpha 2-adrenoceptor agonist and cocaine in the rat. Anesth Analg 79:261–266

    Article  PubMed  CAS  Google Scholar 

  • Pertovaara A, Kontinen VK, Kalso EA (1997) Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat. Exp Neurol 147:428–436

    Article  PubMed  CAS  Google Scholar 

  • Pineda J, Ugedo L, Garcia-Sevilla JA (1993) Stimulatory effects of clonidine, cirazoline and rilmenidine on locus coeruleus noradrenergic neurones: possible involvement of imidazoline-preferring receptors. Naunyn Schmiedebergs Arch Pharmacol 348:134–140

    Article  PubMed  CAS  Google Scholar 

  • Pudovkina OL, Kawahara Y, de Vries J, Westerink BH (2001) The release of noradrenaline in the locus coeruleus and prefrontal cortex studied with dual-probe microdialysis. Brain Res 906:38–45

    Article  PubMed  CAS  Google Scholar 

  • Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 111:409–419

    PubMed  CAS  Google Scholar 

  • Renn CL, Dorsey SG (2005) The physiology and processing of pain: a review. AACN Clin Issues 16:277–290

    Article  PubMed  Google Scholar 

  • Rodriguez-Munoz M, Bermudez D, Sanchez-Blazquez P, Garzon J (2007) Sumoylated RGS-Rz proteins act as scaffolds for Mu-opioid receptors and G-protein complexes in mouse brain. Neuropsychopharmacology 32:842–850

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ortega JA, Ugedo L (1997) The stimulatory effect of clonidine on locus coeruleus neurons of rats with inactivated alpha 2-adrenoceptors: involvement of imidazoline receptors located in the nucleus paragigantocellularis. Naunyn Schmiedebergs Arch Pharmacol 355:288–294

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ortega JA, Ugedo L, Pineda J, Garcia-Sevilla JA (1995) The stimulatory effect of clonidine through imidazoline receptors on locus coeruleus noradrenergic neurones is mediated by excitatory amino acids and modulated by serotonin. Naunyn Schmiedebergs Arch Pharmacol 352:121–126

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Blazquez P, Boronat MA, Olmos G, Garcia-Sevilla JA, Garzon J (2000) Activation of I(2)-imidazoline receptors enhances supraspinal morphine analgesia in mice: a model to detect agonist and antagonist activities at these receptors. Br J Pharmacol 130:146–152

    Article  PubMed  CAS  Google Scholar 

  • Scheinin M, Lomasney JW, Hayden-Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, Fremeau RT Jr (1994) Distribution of alpha 2-adrenergic receptor subtype gene expression in rat brain. Brain Res Mol Brain Res 21:133–149

    Article  PubMed  CAS  Google Scholar 

  • Segal M (1979) Serotonergic innervation of the locus coeruleus from the dorsal raphe and its action on responses to noxious stimuli. J Physiol 286:401–415

    PubMed  CAS  Google Scholar 

  • Shimizu K, Asano M, Kitagawa J, Ogiso B, Ren K, Oki H, Matsumoto M, Iwata K (2006) Phosphorylation of extracellular signal-regulated kinase in medullary and upper cervical cord neurons following noxious tooth pulp stimulation. Brain Res 1072:99–109

    Article  PubMed  CAS  Google Scholar 

  • Singewald N, Philippu A (1998) Release of neurotransmitters in the locus coeruleus. Prog Neurobiol 56:237–267

    Article  PubMed  CAS  Google Scholar 

  • Svensson TH, Bunney BS, Aghajanian GK (1975) Inhibition of both noradrenergic and serotonergic neurons in brain by the alpha-adrenergic agonist clonidine. Brain Res 92:291–306

    Article  PubMed  CAS  Google Scholar 

  • Swett JE, Woolf CJ (1985) The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord. J Comp Neurol 231:66–77

    Article  PubMed  CAS  Google Scholar 

  • Talley EM, Rosin DL, Lee A, Guyenet PG, Lynch KR (1996) Distribution of alpha 2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol 372:111–134

    Article  PubMed  CAS  Google Scholar 

  • Tseng TJ, Hsieh YL, Hsieh ST (2007) Reversal of ERK activation in the dorsal horn after decompression in chronic constriction injury. Exp Neurol 206:17–23

    Article  PubMed  Google Scholar 

  • Urban R, Szabo B, Starke K (1995) Involvement of alpha 2-adrenoceptors in the cardiovascular effects of moxonidine. Eur J Pharmacol 282:19–28

    Article  PubMed  CAS  Google Scholar 

  • Van Bockstaele EJ, Colago EE, Aicher S (1998) Light and electron microscopic evidence for topographic and monosynaptic projections from neurons in the ventral medulla to noradrenergic dendrites in the rat locus coeruleus. Brain Res 784:123–138

    Article  PubMed  Google Scholar 

  • Van Steenwinckel J, Reaux-Le Goazigo A, Pommier B, Mauborgne A, Dansereau MA, Kitabgi P, Sarret P, Pohl M, Melik Parsadaniantz S (2011) CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J Neurosci 31:5865–5875

    Article  PubMed  Google Scholar 

  • Viisanen H, Pertovaara A (2007) Influence of peripheral nerve injury on response properties of locus coeruleus neurons and coeruleospinal antinociception in the rat. Neuroscience 146:1785–1794

    Article  PubMed  CAS  Google Scholar 

  • Wang QP, Nakai Y (1994) The dorsal raphe: an important nucleus in pain modulation. Brain Res Bull 34:575–585

    Article  PubMed  CAS  Google Scholar 

  • West CH, Ritchie JC, Boss-Williams KA, Weiss JM (2009) Antidepressant drugs with differing pharmacological actions decrease activity of locus coeruleus neurons. Int J Neuropsychopharmacol 12:627–641

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Wei H, Kontinen VK, Kalso E, Pertovaara A (2000) The dissociation of sedative from spinal antinociceptive effects following administration of a novel alpha-2-adrenoceptor agonist, MPV-2426, in the locus coeruleus in the rat. Acta Anaesthesiol Scand 44:648–655

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs Raquel Rey-Brea, Mr Jesus Gallego-Gamo and Mrs Beatriz Fraile for their excellent technical assistance. This study was supported by grants from the “Fondo de Investigación Sanitaria” (PI070687, PI10/01221, PI080417); MICINN (SAF 2009–08460); CIBERSAM (G09, G18, G16); Junta de Andalucía, Consejería de Innovación, Ciencia y Empresa (CTS-510, CTS-4303); Cátedra Externa del Dolor Fundación Grünenthal-University of Cadiz; FP7-PEOPLE-2010-RG (268377); the Basque Government (IT199/07); and an FPU fellowship (AP2007-02397). The authors would also like to thank Conselho de Reitores das Universidades Portuguesas (CRUP) for financing the collaboration between the Spanish and Portuguese authors (project Acção Integrada E-42/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Berrocoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alba-Delgado, C., Borges, G., Sánchez-Blázquez, P. et al. The function of alpha-2-adrenoceptors in the rat locus coeruleus is preserved in the chronic constriction injury model of neuropathic pain. Psychopharmacology 221, 53–65 (2012). https://doi.org/10.1007/s00213-011-2542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2542-7

Keywords

Navigation