Skip to main content

Advertisement

Log in

Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM), which is a major public health problem in the world. To reveal the metabolic changes associated with DN, we analyzed the serum, urine, and renal extracts obtained from control and streptozotocin (STZ)-induced DN rats by 1H NMR-based metabonomics and multivariate data analysis. A significant difference between control and DN rats was revealed in metabolic profiles, and we identified several important DN-related metabolites including increased levels of allantoin and uric acid (UA) in the DN rats, suggesting that disturbed purine metabolism may be involved in the DN. Combined with conventional histological and biological methods, we further demonstrated that xanthine oxidase (XO), a key enzyme for purine catabolism, was abnormally activated in the kidney of diabetic rats by hyperglycemia. The highly activated XO increased the level of intracellular ROS, which caused renal injury by direct oxidative damage to renal cells, and indirect inducing inflammatory responses via activating NF-κB signaling pathway. Our study highlighted that metabonomics is a promising tool to reveal the metabolic changes and the underlying mechanism involved in the pathogenesis of DN.

In this study, we performed 1H NMR-based metabonomic to analyze the serum, urine, and renal extracts in a rat model of diabetic nephropathy (DN), and identified the disturbed purine metabolism and its underlying xanthine oxidase induced oxidative stress and inflammation was involved in the pathogenesis of DN

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164–176

    Article  Google Scholar 

  2. Stanton RC (2014) Clinical challenges in diagnosis and management of diabetic kidney disease. Am J Kidney Dis 63:S3–S21

    Article  Google Scholar 

  3. Ritz E, Zeng XX, Rychlik I (2011) Clinical manifestation and natural history of diabetic nephropathy. Contrib Nephrol 170:19–27

    Article  Google Scholar 

  4. Kanwar YS, Sun L, Xie P, Liu FY, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423

    Article  CAS  Google Scholar 

  5. Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4:444–452

    Article  CAS  Google Scholar 

  6. Singh DK, Winocour P, Farrington K (2011) Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol 7:176–184

    Article  CAS  Google Scholar 

  7. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056

    Article  CAS  Google Scholar 

  8. Rezzi S, Ramadan Z, Fay LB, Kochhar S (2007) Nutritional metabonomics: applications and perspectives. J Proteome Res 6:513–525

    Article  CAS  Google Scholar 

  9. Dieterle F, Riefke B, Schlotterbeck G, Ross A, Senn H, Amberg (2011) A NMR and MS methods for metabonomics. Methods Mol Biol 691:385–415

    Article  CAS  Google Scholar 

  10. Makinen VP, Soininen P, Forsblom C, Parkkonen M, Ingman P, Kaski K, Groop PH, Ala-Korpela M (2008) 1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death. Mol Syst Biol 4:167

    Article  Google Scholar 

  11. Hirayama A, Nakashima E, Sugimoto M, Akiyama S, Sato W, Maruyama S, Matsuo S, Tomita M, Yuzawa Y, Soga T (2012) Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal Bioanal Chem 404:3101–3109

    Article  CAS  Google Scholar 

  12. Pena MJ, Lambers Heerspink HJ, Hellemons ME, Friedrich T, Dallmann G, Lajer M, Bakker SJ, Gansevoort RT, Rossing P, de Zeeuw D, Roscioni SS (2014) Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet Med 31:1138–1147

    Article  CAS  Google Scholar 

  13. Zhao L, Gao H, Lian F, Liu X, Zhao Y, Lin D (2011) 1H-NMR-based metabonomic analysis of metabolic profiling in diabetic nephropathy rats induced by streptozotocin. Am J Physiol Ren Physiol 300:F947–F956

    Article  CAS  Google Scholar 

  14. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703

    Article  CAS  Google Scholar 

  15. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442

    Article  CAS  Google Scholar 

  16. Wang D, Liu J, He S, Wang C, Chen Y, Yang L, Liu F, Ren Y, Tian H, Yang G, Liao G, Li L, Shi M, Yuan Y, Zhao J, Cheng J, Lu Y (2014) Assessment of early renal damage in diabetic rhesus monkeys. Endocrine 47:783–792

    Article  CAS  Google Scholar 

  17. Bain JR, Stevens RD, Wenner BR, Ilkayeva O, Muoio DM, Newgard CB (2009) Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes 58:2429–2443

    Article  CAS  Google Scholar 

  18. Liu J, Wang D, Chen Y, Sun H, He S, Wang C, Yang G, Shi M, Zhang J, Ren Y, Wang L, Lu Y, Cheng J (2013) 1H NMR-based metabonomic analysis of serum and urine in a nonhuman primate model of diabetic nephropathy. Mol Biosyst 9:2645–2652

    Article  CAS  Google Scholar 

  19. Zoppini G, Targher G, Chonchol M, Ortalda V, Abaterusso C, Pichiri I, Negri C, Bonora E (2012) Serum uric acid levels and incident chronic kidney disease in patients with type 2 diabetes and preserved kidney function. Diabetes Care 35:99–104

    Article  CAS  Google Scholar 

  20. Hovind P, Rossing P, Tarnow L, Johnson RJ, Parving HH (2009) Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study. Diabetes 58:1668–1671

    Article  CAS  Google Scholar 

  21. George J, Struthers AD (2009) Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 5:265–272

    Article  CAS  Google Scholar 

  22. Doehner W, Landmesser U (2011) Xanthine oxidase and uric acid in cardiovascular disease: clinical impact and therapeutic options. Semin Nephrol 31:433–440

    Article  CAS  Google Scholar 

  23. Marklund N, Ostman B, Nalmo L, Persson L, Hillered L (2000) Hypoxanthine, uric acid and allantoin as indicators of in vivo free radical reactions. Description of a HPLC method and human brain microdialysis data. Acta Neurochir (Wien) 142:1135–1141

    Article  CAS  Google Scholar 

  24. Bravard A, Bonnard C, Durand A, Chauvin MA, Favier R, Vidal H, Rieusset J (2011) Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice. Am J Physiol Endocrinol Metab 300:E581–E591

    Article  CAS  Google Scholar 

  25. Desco MC, Asensi M, Marquez R, Martinez-Valls J, Vento M, Pallardo FV, Sastre J, Vina J (2002) Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes 51:1118–1124

    Article  CAS  Google Scholar 

  26. Rajesh M, Mukhopadhyay P, Batkai S, Mukhopadhyay B, Patel V, Hasko G, Szabo C, Mabley JG, Liaudet L, Pacher P (2009) Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy. J Cell Mol Med 13:2330–2341

    Article  Google Scholar 

  27. Romagnoli M, Gomez-Cabrera MC, Perrelli MG, Biasi F, Pallardó FV, Sastre J, Poli G, Viña J (2010) Xanthine oxidase-induced oxidative stress causes activation of NF-kappaB and inflammation in the liver of type I diabetic rats. Free Radic Biol Med 49:171–177

    Article  CAS  Google Scholar 

  28. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  CAS  Google Scholar 

  29. Tabak O, Gelisgen R, Erman H, Erdenen F, Muderrisoglu C, Aral H, Uzun H (2011) Oxidative lipid, protein, and DNA damage as oxidative stress markers in vascular complications of diabetes mellitus. Clin Invest Med 34:E163–E171

    CAS  Google Scholar 

  30. Sun L, Hu W, Liu Q, Hao Q, Sun B, Zhang Q, Mao S, Qiao J, Yan X (2012) Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients. J Proteome Res 11:2937–2946

    Article  CAS  Google Scholar 

  31. Elmarakby AA, Sullivan JC (2012) Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 30:49–59

    Article  CAS  Google Scholar 

  32. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21:103–115

    Article  CAS  Google Scholar 

  33. Kosugi T, Nakayama T, Heinig M, Zhang L, Yuzawa Y, Sanchez-Lozada LG, Roncal C, Johnson RJ, Nakagawa T (2009) Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Ren Physiol 297:F481–F488

    Article  CAS  Google Scholar 

  34. Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22

    Article  CAS  Google Scholar 

  35. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Pengchi Deng in Analytical & Testing Center of Sichuan University for NMR analysis. This work was supported by grants from National Natural Science Foundation of China (31200754, 30930088) and China Postdoctoral Science Foundation (2012 M511931).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanrong Lu or Jingqiu Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, C., Liu, F. et al. Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy. Anal Bioanal Chem 407, 2569–2579 (2015). https://doi.org/10.1007/s00216-015-8481-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8481-0

Keywords

Navigation