Skip to main content
Log in

Effect of pravastatin on plasma sterols and oxysterols in men

  • Clinical Trials
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objectives

The HMG-CoA reductase inhibitors, or statins, are well established in the prevention and treatment of coronary artery disease, mainly by lowering low-density lipoprotein (LDL) cholesterol levels. These compounds are structurally similar, but differ in their lipophilicity. Several studies have indicated a link between cholesterol and Alzheimer’s disease (AD), and there is also epidemiological evidence that statin treatment may decrease the prevalence of dementias. In the present study we wanted to investigate whether pravastatin treatment affects brain cholesterol metabolism.

Methods

A post hoc analysis was performed with plasma material from a clinical trial where 51 healthy men (35±4 years) were randomly assigned to receive either pravastatin (40 mg/day) or placebo for 6 months. Cholesterol, its precursor lathosterol, its brain-specific metabolite 24(S)-hydroxycholesterol (24S-OH-chol) and 27-hydroxycholesterol (27-OH-chol) were determined in plasma samples before and after treatment by using gas-liquid chromatography (GC)-flame ionization detection (GC-FID) and GC mass spectrometry (GC-MS).

Results

Besides reducing total cholesterol (−20%, P<0.001) and LDL cholesterol (LDL-C; −33%, P<0.001) concentrations, pravastatin treatment resulted in a decrease of the ratio of lathosterol to cholesterol, a surrogate marker of endogenous cholesterol synthesis, by 20% (P<0.05). Absolute concentrations of 24S-OH-chol were not altered, but its ratio to cholesterol slightly increased by 15% (P<0.05). 27-OH-chol concentrations as well as its ratio to cholesterol were both significantly altered due to pravastatin treatment (−7% and +14%, P<0.05 for both, respectively).

Conclusions

The treatment with pravastatin 40 mg once a day for 6 months does not affect brain cholesterol metabolism as judged by plasma concentrations of 24(S)-hydroxycholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertolotti M, Abate N, Loria P, Dilengite M, Carubbi F, Pinetti A, Digrisolo A, Carulli N (1991) Regulation of bile acid synthesis in humans: effect of treatment with bile acids, cholestyramine or simvastatin on cholesterol 7 alpha-hydroxylation rates in vivo. Hepatology 14:830–837

    Article  PubMed  CAS  Google Scholar 

  2. Björkhem I, Andersson U, Ellis E, Alvelius G, Ellegard L, Diczfalusy U, Sjövall J, Einarsson C (2001) From brain to bile. Evidence that conjugation and omega-hydroxylation are important for elimination of 24S-hydroxycholesterol (cerebrosterol) in humans. J Biol Chem 276:37004–37010

    Article  PubMed  Google Scholar 

  3. Björkhem I, Lütjohann D, Breuer O, Sakinis A, Wennmalm A (1997) Importance of a novel oxidative mechanism for elimination of brain cholesterol. Turnover of cholesterol and 24(S)-hydroxycholesterol in rat brain as measured with 18O2 techniques in vivo and in vitro. J Biol Chem 272:30178–30184

    Article  PubMed  Google Scholar 

  4. Björkhem I, Lütjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39:1594–1600

    PubMed  Google Scholar 

  5. Björkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24:806–815

    Article  PubMed  CAS  Google Scholar 

  6. Botti RE, Triscari J, Pan HY, Zayat J (1991) Concentrations of pravastatin and lovastatin in cerebrospinal fluid in healthy subjects. Clin Neuropharmacol 14:256–261

    Article  PubMed  CAS  Google Scholar 

  7. Bretillon L, Sidén A, Wahlund LO, Lütjohann D, Minthon L, Crisby M, Hillert J, Groth CG, Diczfalusy U, Björkhem I (2000) Plasma levels of 24S-hydroxycholesterol in patients with neurological diseases. Neurosci Lett 293:87–90

    Article  PubMed  CAS  Google Scholar 

  8. Brown MS, Faust JR, Goldstein JL (1978) Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem 253:1121–1128

    PubMed  CAS  Google Scholar 

  9. Cali JJ, Russell DW (1991) Characterization of human sterol 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J Biol Chem 266:7774–7778

    PubMed  CAS  Google Scholar 

  10. Davignon J (2004) Beneficial cardiovascular pleiotropic effects of statins. Circulation 109:III39–III43

    PubMed  Google Scholar 

  11. Dietschy JM, Turley SD (2001) Cholesterol metabolism in the brain. Curr Opin Lipidol 12:105–112

    Article  PubMed  CAS  Google Scholar 

  12. Dupont WD, Plummer WD, Jr (1998) Power and sample size calculations for studies involving linear regression. Control Clin Trials 19:589–601

    Article  PubMed  CAS  Google Scholar 

  13. Eckernas SA, Roos BE, Kvidal P, Eriksson LO, Block GA, Neafus RP, Haigh JR (1993) The effects of simvastatin and pravastatin on objective and subjective measures of nocturnal sleep: a comparison of two structurally different HMG CoA reductase inhibitors in patients with primary moderate hypercholesterolaemia. Br J Clin Pharmacol 35:284–289

    PubMed  CAS  Google Scholar 

  14. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  15. Hanson DS, Duane WC (1994) Effects of lovastatin and chenodiol on bile acid synthesis, bile lipid composition, and biliary lipid secretion in healthy human subjects. J Lipid Res 35:1462–1468

    PubMed  CAS  Google Scholar 

  16. Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:7–22

    Article  Google Scholar 

  17. Höglund K, Thelen KM, Syversen S, Sjogren M, von Bergmann K, Wallin A, Vanmechelen E, Vanderstichele H, Lütjohann D, Blennow K (2005) The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 19:256–265

    Article  PubMed  CAS  Google Scholar 

  18. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    Article  PubMed  CAS  Google Scholar 

  19. Jones P, Kafonek S, Laurora I, Hunninghake D (1998) Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES study). Am J Cardiol 81:582–587

    Article  PubMed  CAS  Google Scholar 

  20. Kempen HJ, Glatz JF, Gevers Leuven JA, van der Voort HA, Katan MB (1988) Serum lathosterol concentration is an indicator of whole-body cholesterol synthesis in humans. J Lipid Res 29:1149–1155

    PubMed  CAS  Google Scholar 

  21. Koga T, Shimada Y, Kuroda M, Tsujita Y, Hasegawa K, Yamazaki M (1990) Tissue-selective inhibition of cholesterol synthesis in vivo by pravastatin sodium, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Biochim Biophys Acta 1045:115–120

    PubMed  CAS  Google Scholar 

  22. Li G, Higdon R, Kukull WA, Peskind E, Van Valen Moore K, Tsuang D, van Belle G, McCormick W, Bowen JD, Teri L, Schellenberg GD, Larson EB (2004) Statin therapy and risk of dementia in the elderly: a community-based prospective cohort study. Neurology 63:1624–1628

    PubMed  CAS  Google Scholar 

  23. Locatelli S, Lütjohann D, Schmidt HH, Otto C, Beisiegel U, von Bergmann K (2002) Reduction of plasma 24S-hydroxycholesterol (cerebrosterol) levels using high-dosage simvastatin in patients with hypercholesterolemia: evidence that simvastatin affects cholesterol metabolism in the human brain. Arch Neurol 59:213–216

    Article  PubMed  Google Scholar 

  24. Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A 96:7238–7243

    Article  PubMed  CAS  Google Scholar 

  25. Lütjohann D, Breuer O, Ahlborg G, Nennesmo I, Siden A, Diczfalusy U, Björkhem I (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci U S A 93:9799–9804

    Article  PubMed  Google Scholar 

  26. Lütjohann D, Papassotiropoulos A, Björkhem I, Locatelli S, Bagli M, Oehring RD, Schlegel U, Jessen F, Rao ML, von Bergmann K, Heun R (2000) Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 41:195–198

    PubMed  Google Scholar 

  27. Niemi M, Schaeffeler E, Lang T, Fromm MF, Neuvonen M, Kyrklund C, Backman JT, Kerb R, Schwab M, Neuvonen PJ, Eichelbaum M, Kivisto KT (2004) High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 14:429–440

    Article  PubMed  CAS  Google Scholar 

  28. Paiva H, Thelen KM, Van Coster R, Smet J, De Paepe B, Mattila KM, Laakso J, Lehtimaki T, von Bergmann K, Lütjohann D, Laaksonen R (2005) High-dose statins and skeletal muscle metabolism in humans: a randomized, controlled trial. Clin Pharmacol Ther 78:60–68

    Article  PubMed  CAS  Google Scholar 

  29. Papassotiropoulos A, Lütjohann D, Bagli M, Locatelli S, Jessen F, Rao ML, Maier W, Björkhem I, von Bergmann K, Heun R (2000) Plasma 24S-hydroxycholesterol: a peripheral indicator of neuronal degeneration and potential state marker for Alzheimer’s disease. Neuroreport 11:1959–;1962

    Article  PubMed  CAS  Google Scholar 

  30. Reihner E, Rudling M, Stahlberg D, Berglund L, Ewerth S, Björkhem I, Einarsson K, Angelin B (1990) Influence of pravastatin, a specific inhibitor of HMG-CoA reductase, on hepatic metabolism of cholesterol. N Engl J Med 323:224–228

    Article  PubMed  CAS  Google Scholar 

  31. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 335:1001–1009

    Article  PubMed  CAS  Google Scholar 

  32. Shanahan CM, Carpenter KL, Cary NR (2001) A potential role for sterol 27-hydroxylase in atherogenesis. Atherosclerosis 154:269–276

    Article  PubMed  CAS  Google Scholar 

  33. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 333:1301–1307

    Article  PubMed  CAS  Google Scholar 

  34. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K (1998) Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 95:6460–6464

    Article  PubMed  CAS  Google Scholar 

  35. Sirtori CR (1993) Tissue selectivity of hydroxymethylglutaryl coenzyme A (HMG CoA) reductase inhibitors. Pharmacol Ther 60:431–459

    Article  PubMed  CAS  Google Scholar 

  36. Smith GD (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344:1383–1389

    Google Scholar 

  37. Sparks DL, Scheff SW, Hunsaker JC 3rd, Liu H, Landers T, Gross DR (1994) Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126:88–94

    Article  PubMed  CAS  Google Scholar 

  38. Vanhanen H, Kesaniemi YA, Miettinen TA (1992) Pravastatin lowers serum cholesterol, cholesterol-precursor sterols, fecal steroids, and cholesterol absorption in man. Metabolism 41:588–595

    Article  PubMed  CAS  Google Scholar 

  39. Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 57:1439–1443

    Article  PubMed  CAS  Google Scholar 

  40. Zandi PP, Sparks DL, Khachaturian AS, Tschanz J, Norton M, Steinberg M, Welsh-Bohmer KA, Breitner JC (2005) Do statins reduce risk of incident dementia and Alzheimer disease? The Cache County Study. Arch Gen Psychiatry 62:217–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Silvia Friedrichs and Ms. Marita Koli for their skilful technical assistance. This study was financially supported by the Tampere University Hospital Medical Fund. The procedures in this study complied with the current laws of the country in which they were performed (Finland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Lütjohann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thelen, K.M., Lütjohann, D., Vesalainen, R. et al. Effect of pravastatin on plasma sterols and oxysterols in men. Eur J Clin Pharmacol 62, 9–14 (2006). https://doi.org/10.1007/s00228-005-0068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-005-0068-9

Keywords

Navigation