Skip to main content

Advertisement

Log in

Monte Carlo simulation evaluation of tigecycline dosing for bacteria with raised minimum inhibitory concentrations in non-critically ill adults

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Tigecycline is one of few antibiotics active against multidrug-resistant bacteria; however, the assessment of dosing strategies to optimize its activity is needed. The purpose was to use Monte Carlo Simulation (MCS) to determine if safe tigecycline dosing options attaining breakpoints for pharmacokinetic/pharmacodynamic (PK-PD) targets in non-critically ill adults could be identified.

Methods

Publications that evaluated tigecycline dosing regimens and provided mean PK variables of interest (minimum 2 of: elimination rate constant or half-life and volume of distribution or clearance), with SDs, were included. Weighted mean (±SDs) for each PK parameter were determined. Food and Drug Administration minimum inhibitory concentration (MIC) tigecycline breakpoints for susceptible (MIC ≤ 2 μg/mL), intermediate (MIC 4 μg/mL), and resistant (MIC ≥ 8 μg/mL) Enterobacteriaceae were used. MCS probability distributions for PK-PD target attainment of AUC for total tigecycline plasma concentration from 0 to 24 h following an intravenous dose (AUCtotal, 0-24h) to MIC ratios of ≥ 18, 7, and 4.5 were generated, with success defined as ≥ 80% probability of target attainment at a given MIC.

Results

Ten studies (n = 442) were eligible. Tigecycline 150 mg IV q12h for ward patients with resistant bacteria up to a MIC of 0.48, 1, and 2 μg/mL for an AUCtotal, 0-24h/MIC target attainment of 18, 7, and 4.5, respectively, may be appropriate.

Conclusion

Bacterial infections with tigecycline MICs ≥ 0.48–2 μg/mL, depending on AUCtotal, 0-24h/MIC target, may require treatment with alternate antibiotics due to target attainment failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available in the supplementary material of this article.

References

  1. Boucher HW, Ambrose PG, Chambers HF, Ebright RH, Jezek A, Murray BE, Newland JG, Ostrowsky B, Rex JH (2017) White paper: developing antimicrobial drugs for resistant pathogens, narrow-Spectrum indications, and unmet needs. J Infect Dis 216(2):228–236. https://doi.org/10.13039/100004440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. deKraker MEA, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13(11):e1002184. https://doi.org/10.1371/journal.pmed.1002184

    Article  Google Scholar 

  3. Yahav D, Lador A, Paul M, Leibovici L (2011) Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother 66(9):1963–1971. https://doi.org/10.1093/jac/dkr24

    Article  CAS  PubMed  Google Scholar 

  4. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Barlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12. https://doi.org/10.1086/595011

    Article  PubMed  Google Scholar 

  5. Peterson LR (2009) Bad bugs, no drugs: no ESCAPE revisited. Clin Infect Dis 49(6):992–993. https://doi.org/10.1086/605539

    Article  PubMed  Google Scholar 

  6. Roberts JA, Kirkpatrick CMJ, Lipman J (2011) Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother 66(2):227–231. https://doi.org/10.1093/jac/dkq449

    Article  CAS  PubMed  Google Scholar 

  7. Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B (2017) Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 30(1):409–447. https://doi.org/10.1128/CMR.00058-16

    Article  CAS  PubMed  Google Scholar 

  8. Coelho JM, Turton JF, Kaufmann ME, Glover J, Woodford N, Warner M, Palepou MF, Pike R, Pitt TL, Patel BC, Livermore DM (2006) Occurrence of Carbapenem-resistant Acinetobacter baumannii clones at multiple hospitals in London and Southeast England. J Clin Microbiol 44(10):3623–3627. https://doi.org/10.1128/JCM.00699-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xie J, Wang T, Sun J, Chen S, Cai J, Zhang W, Dong H, Hu S, Zhang D, Wang X, Dong Y (2014) Optimal tigecycline dosage regimen is urgently needed: results from a pharmacokinetic/pharmacodynamic analysis of tigecycline by Monte Carlo simulation. Int J Infect Dis 18:62–67. https://doi.org/10.1016/j.ijid.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  10. Xie J, Roberts JA, Abdulaziz AS, Roger C, Wang Y, Yang Q (2017) Population pharmacokinetics of Tigecycline in critically ill patients with severe infections. Antimicrob Agents Chemother 61(8):e000345–e000317. https://doi.org/10.1128/AAC.00345-17

    Article  Google Scholar 

  11. Meagher AK, Passarell JA, Cirincione BB, Van Wart SA, Liolios K, Babinchak T, Ellis-Grosse EJ, Ambrose PG (2007) Exposure-response analysis of Tigecycline efficacy in patients with complicated skin and skin-structure infections. Antimicrob Agents Chemother 51(6):1939–1945. https://doi.org/10.1128/AAC.01084-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. FDA (2010) Drug Safety Communication: Increased risk of death with Tygacil (tigecycline) compared to other antibiotics used to treat similar infections https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-increased-risk-death-tygacil-tigecycline-compared-other-antibiotics (Accessed 12 July 2020)

  13. Freire AT, Melnyk V, Kim MJ, Datsenko O, Dzybulik O, Glumcher F, Chuang YC, Maroko RT, Dukart G, Cooper CA, Koth-Bradley JM, Dartois N, Gandjini H (2010) Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 68:140–151. https://doi.org/10.1016/j.diagmicrobio.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  14. Reed GA, Schiller GJ, Kambhampati S, Tallman MS, Douer D, Minden MD, Yee KW, Gupta V, Brandwein J, Jitkova Y, Gronda M, Hurren R, Shamas-Din A, Schuh A, Schimmer AD (2016) A phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia. Cancer Med 5(11):3031–3040. https://doi.org/10.1002/cam4.845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muralidharan G, Micalizzi M, Speth J, Raible D, Troy S (2005) Pharmacokinetics of Tigecycline after single and multiple doses in healthy subjects. Antimicrob Agents Chemother 49(1):220–229 10.1128/AAC.49.1.220–229.2005

    Article  CAS  Google Scholar 

  16. Yamashita N, Matschke K, Gandhi A, Korth-Bradley J (2014) Tigecycline pharmacokinetics, tolerability, safety, and effect of intestinal microflora in healthy Japanese male subjects. J Clin Pharmacol 54(5):513–519. https://doi.org/10.1002/jcph.236

    Article  CAS  PubMed  Google Scholar 

  17. Marchaim D, Pogue JM, Tzuman O, Hayakawa K, Lephart PR, Salimnia H, Painter T, Zervos MJ, Johnson LE, Perri MB, Hartman P, Thyagarajan RV, Major S, Goodell M, Fakih MG, Washer LL, Newton DW, Malani AN, Wholehan JM, Mody L, Kaye KS (2014) Major variation in MICs of Tigecycline in gram-negative bacilli as a function of testing method. J Clin Microbiol 52(5):1617–1621. https://doi.org/10.1128/JCM.00001-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis. Geneva: World Health Organization; 2017 (WHO/EMP/IAU/2017.12). Licence: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/bitstream/handle/10665/258965/WHO-EMP-IAU-2017.11-eng.pdf;jsessionid=B3F49A159A89A6210C1DDD3F38C9C0C8?sequence=1. Accessed 12 July 2020

  19. Hoffmann M, DeMaio W, Jordan RA, Talaat R, Harper D, Speth J, Scatina J (2007) Metabolism, excretion, and pharmacokinetics of [14C] Tigecycline, a first-in-class Glycylcycline antibiotic, after intravenous infusion to healthy male subjects. Drug Metab Dispos 35(9):1543–1553. https://doi.org/10.1124/dmd.107.015735

    Article  CAS  PubMed  Google Scholar 

  20. Korth-Bradley JM, McGovern PC, Salageanu J, Matschke K, Plotka A, Pawlak S (2013) Tigecycline does not prolong corrected QT intervals in healthy subjects. Antimicrob Agents Chemother 57(4):1895–1901. https://doi.org/10.1128/AAC.01576-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korth-Bradley JM, Troy SM, Matschke K, Muralidharan G, Fruncillo RJ, Speth JL, Raible DG (2012) Tigecycline pharmacokinetics in subjects with various degrees of renal function. J Clin Phamacol 52(9):1379–1387. https://doi.org/10.1177/0091270011416938

    Article  CAS  Google Scholar 

  22. Korth-Bradley JM, Baird-Bellaire SJ, Patat AA, Troy SM, Bohmer GM, Gleiter CG, Buecheler R, Morgan MY (2011) Pharmacokinetics and safety of a single intravenous dose of the antibiotic tigecycline in patients with cirrhosis. J Clin Pharm Ther 51(1):93–101. https://doi.org/10.1177/0091270010363477

    Article  CAS  Google Scholar 

  23. Nord CE, Sillerstrom E, Wahlund E (2006) Effect of tigecycline on normal oropharyngeal and intestinal microflora. Antimicrob Agents Chemother 50(10):3375–3380. https://doi.org/10.1128/AAC.00373-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muralidharan G, Fruncillo RJ, Micalizzi M, Raible DG, Troy SM (2005) Effects of age and sex on single-dose pharmacokinetics of tigecycline in healthy subjects. Antimicrob Agents Chemother 49(4):1656–1659 10.1128/AAC.49.4.1656–1659.2005

    Article  CAS  Google Scholar 

  25. Conte JE, Golden JA, Kelly MG, Zurlinden E (2005) Steady-state serum and intrapulmonary pharmacokinetics and pharmacodynamics of tigecycline. Int J Antimicrob Agents 25(6):523–529. https://doi.org/10.1016/j.ijantimicag.2005.02.013

    Article  CAS  PubMed  Google Scholar 

  26. Bulik CC, Wiskirchen DE, Shepard A, Sutherland CA, Kuti JL, Nicolau DP (2010) Tissue penetration and pharmacokinetics of tigecycline in diabetic patients with chronic wound infections described by using in vivo microdialysis. Antimicrob Agents Chemother 54(12):5209–5213. https://doi.org/10.1128/AAC.01051-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clinical and Laboratory Standards Institute (2017) Performance standards for antimicrobial susceptibility testing. 27th informational supplement. Approved standard M100-S27. Clinical and Laboratory Standards Institute, Wayne, PA. https://www.google.com/search?q=2017+CLSI+27th+information+supplement+antimicrobial+susceptibility+standards&rlz=1C1GGRV_enCA804CA805&oq=2017+CLSI+27th+information+supplement+antimicrobial+susceptibility+standards&aqs=chrome..69i57.23871j0j9&sourceid=chrome&ie=UTF-8. Accessed 12 July 2020

  28. Pfizer Canada. Tygacil (tigecycline) package insert (2020) Kirkland, Quebec. https://www.pfizer.ca/sites/default/files/202005/TYGACIL_PM_E_235179_21Apr2020.pdf (Accessed 12 July 2020)

  29. Ni W, Liang B, Cai Y, Liu Y, Bai N, Ciu J, Wang R (2014) A pharmacodynamic simulation to evaluate tigecycline in treatment of nosocomial pneumonia caused by multi-drug resistant Acinetobacter baumannii. Pak J Pharm Sci 27(3):463–467 No doi identified

    CAS  PubMed  Google Scholar 

  30. Nicolau DP, Quintana A, Korth-Bradley JM, Wible M, Dowzicky MJ (2015) Rationale for maintaining current Tigecycline breakpoints as established by the USA Food and Drug Administration. Arch Clin Microbiol 6(4):7 No doi identified

    Google Scholar 

  31. Eagye KJ, Kuti JL, Dowzicky M, Nicolau DP (2007) Empiric therapy for secondary peritonitis: a pharmacodynamic analysis of cefipime, ceftazidime, ceftriaxone, imipenem, levofloxacin, piperacillin/tazobactam, and tigecycline using Monte Carlo simulation. Clin Ther 29(5):889–899. https://doi.org/10.1016/j.clinthera.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  32. Wei C, Ni W, Cai X, Cui J (2015) A Monte Carlo pharmacokinetic/pharmacodynamic simulation to evaluate the efficacy of minocycline, tigecycline, moxifloxacin, and levofloxacin in the treatment of hospital acquired pneumonia caused by Stenotrophomonas maltophilia. Infect Dis 47(12):846–851. https://doi.org/10.3109/23744235.2015.1064542

    Article  CAS  Google Scholar 

  33. Rubino CM, Ma L, Bhavnani SM, Korth-Bradley J, Speth J, Ellis-Grosse E, Rodvold KR, Ambrose PG, Drusano GL (2007) Evaluation of tigecycline penetration into colon wall tissue and epithelial lining fluid using a population pharmacokinetic model and Monte Carlo simulation. Antimicrob Agents Chemother 51(11):4085–4089. https://doi.org/10.1128/AAC.00065-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ni W, Li G, Zhao L, Cui J, Wang R, Gao Z, Liu Y (2018) Use of Monte Carlo simulation to evaluate the efficacy of tigecycline and minocycline for the treatment of pneumonia due to carbapenemase-producing Klebsiella pneumoniae. Infect Dis 50(7):507–513. https://doi.org/10.1080/23744235.2018.1423703

    Article  CAS  Google Scholar 

  35. Xu Y, Jin L, Liu N, Luo X, Dong D, Tang J, Wang Y, You Y, Liu Y, Chen M, Yu Z, Hao Y, Gu Q, (2019) Evaluation of the ratio of the estimated area under the concentration-time curve to minimum inhibitory concentration (estimated AUIC) as a predictor of the outcome for tigecycline treatment for pneumonia due to multidrug-resistant bacteria in an intensive care unit. Int J Infect Dis 82:79–85. https://doi.org/10.1016/j.ijid.2019.03.011

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Brianna Kispal: data collection, data analysis, manuscript development; Sandra Walker: project supervisor, study conceptualization, methods development, data analysis, manuscript development.

Corresponding author

Correspondence to Sandra A. N. Walker.

Ethics declarations

Conflict of interest

All authors attest that they have no competing interests to declare.

Code availability

Not applicable.

Ethics approval

Not required.

Consent to participate

Not applicable.

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 90.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kispal, B., Walker, S.A.N. Monte Carlo simulation evaluation of tigecycline dosing for bacteria with raised minimum inhibitory concentrations in non-critically ill adults. Eur J Clin Pharmacol 77, 197–205 (2021). https://doi.org/10.1007/s00228-020-02998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-020-02998-7

Keywords

Navigation