Skip to main content
Log in

Functional Links between Membrane Transport and the Spectrin Cytoskeleton

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Membrane transporters precisely regulate which molecules cross the plasma membrane and when they can cross. In many cases it is also important to regulate where substances can cross the plasma membrane. Consequently, cells have evolved mechanisms to confine and stabilize membrane transport proteins within specific subdomains of the plasma membrane. A number of different transporters (including ion pumps, channels and exchangers) are known to physically associate with the spectrin cytoskeleton, a submembrane complex of spectrin and ankyrin. These proteins form a protein scaffold that assembles within discrete subdomains of the plasma membrane in polarized cells. Recent genetic studies in humans and model organisms have provided the opportunity to test the hypothesis that the spectrin cytoskeleton has a direct role in restricting transporters to specialized domains. Remarkably, genetic defects in spectrin and ankyrin can produce effects on cell physiology that are comparable to knockouts of the transporters themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Banuelos S., M. Saraste, K.D. Carugo. 1998. Structural comparisons of calponin homology domains: implications for actin binding. Structure 6:1419–1431

    Article  PubMed  CAS  Google Scholar 

  • Bennett V. 1989. The spectrin-actin junction of erythrocyte membrane skeletons. Biochim. Biophys. Acta 988:107–121

    PubMed  CAS  Google Scholar 

  • Bennett V., A.J. Baines. 2001. Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues. Physiol. Rev. 81:1353–1388

    PubMed  CAS  Google Scholar 

  • Bennett V., L. Chen. 2001. Ankyrins and cellular targeting of diverse membrane proteins to physiological sites. Curr. Op. Cell Biol. 13:61–67

    Article  PubMed  CAS  Google Scholar 

  • Bennett V., Davis J., W.E. Fowler. 1982. Brain spectrin, a membrane-associated protein related in structure and function to human erythrocyte spectrin. Nature 299:126–131

    Article  PubMed  CAS  Google Scholar 

  • Berghs S., D. Aggujaro, R. Dirkx, E. Maksimova, P. Stabach, J.-M. Mermel, M.-P. Zhang, W. Philbrick, V. Slepnev, T., Ort, M. Solimena. 2000. ΒIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system. J. Cell Biol. 151:985–1001

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon L.Y.W., H. Jin, N. Iida, N.R. Brandt, S.H. Zhang. 1993. The involvement of ankyrin in the regulation of inositol 1,4,5-triphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells. J. Biol. Chem. 268:7290–7297

    PubMed  CAS  Google Scholar 

  • Bretscher A., K. Edwards, R.G. Fehon. 2002. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol. 3:586–599

    Article  PubMed  CAS  Google Scholar 

  • Byers T.J., D. Branton. 1985. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. Natl. Acad. Sci. USA 82:6153–6157

    Article  PubMed  CAS  Google Scholar 

  • Craig S.W., J.V. Pardo. 1983. Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motil. 3:449–462

    Article  PubMed  CAS  Google Scholar 

  • Chung H. J., Y. N. Jan, L.Y. Jan. 2006. Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-erminal domains. Proc. Natl Acad. Sci. USA 103: 8870–8875

    Article  PubMed  CAS  Google Scholar 

  • Das A., S. Srinivasan, C. Base, P. Ng, D. Pruden, R.R. Dubreuil (2003) Characterization of a new Drosophila anion exchanger (DAE) and its dependence on the spectrin cytoskeleton. Mol. Biol.Cell 14:194a

    Google Scholar 

  • Das, A., Base, C., Dhulipala, S., Dubreuil, R.R. 2006. Spectrin functions upstream of ankyrin in a spectrin cytoskeleton assembly pathway. J. Cell Biol., in press

  • Davis J., V. Bennett. 1984. Brain ankyrin. J. Biol. Chem. 259:13550–13559

    PubMed  CAS  Google Scholar 

  • Davis J.Q., T. McLaughlin, V. Bennett. 1993. Ankyrin-binding proteins related to nervous system cell adhesion molecules: Candidates to provide transmembrane and intercellular connections in adult brain. J. Cell Biol. 121:121–133

    Article  PubMed  CAS  Google Scholar 

  • Devarajan P., D.A. Scaramuzzino, J.S. Morrow. 1994. Ankyrin binds to two distinct cytoplasmic domains of Na,K-ATPase α subunit. Proc. Natl. Acad. Sci. USA. 91:2965–2969

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn D., Schluter K., Allen D.P., V. Bennett. 1985. Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science. 230:1287–1289

    Article  PubMed  CAS  Google Scholar 

  • Drubin D.G., W.J. Nelson. 1996. Origins of Cell Polarity. Cell. 84:335–344

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil R.R., Byers T.J., Stewart C.T., D.P. Kiehart. 1990. A β spectrin isoform from DrosophilaH) is similar in size to vertebrate dystrophin. J. Cell Biol. 111:1849–1858

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil R.R., G.R. MacVicar, S. Dissanayake, C. Liu, D. Homer, M. Hortsch. 1996. Neuroglian-mediated adhesion induces assembly of the membrane skeleton at cell contact sites. J. Cell Biol. 133:647–655

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil R.R., P. Wang, S.C. Dahl, J.K. Lee, L.S.B. Goldstein. 2000. Drosophila βspectrin functions independently of α spectrin to polarize the Na,K ATPase in epithelial cells. J. Cell Biol. 149:647–656

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil R.R., J. Yu. 1994. Ankyrin and β spectrin accumulate independently of α spectrin in Drosophila. Proc. Natl. Acad. Sci. USA. 91:10285–10289

    Article  PubMed  CAS  Google Scholar 

  • Fowler V., D. Branton. 1977. Lateral mobility of human erythrocyte integral membrane proteins. Nature 268: 23–26

    Article  PubMed  CAS  Google Scholar 

  • Funke L., S. Dakoji, D.S. Bredt. 2005. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Ann. Rev. Biochem. 74:219–245

    Article  PubMed  CAS  Google Scholar 

  • Garrido J.J., P. Giraud, E. Carlier, F. Fernandes, A. Moussif, M.-P. Fache, D. Debanne, B. Dargent. 2003. A targeting motif involved in sodium channel clustering at the axonal initial segment. Science. 300:2091–2094

    Article  PubMed  CAS  Google Scholar 

  • Garver T.D., Q. Ren, S. Tuvia, V. Bennett. 1997. Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J. Cell Biol. 137:703–714

    Article  PubMed  CAS  Google Scholar 

  • Glenney J.R., Glenney P., Osborn M., K. Weber. 1982. An F-actin and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 28:843–854

    Article  PubMed  CAS  Google Scholar 

  • Golan D. E., W. Veatch. 1980. Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: Evidence for control by cytoskeletal interactions. Proc. Natl Acad. Sci. USA 77: 2537–2541

    Article  PubMed  CAS  Google Scholar 

  • Hanwell D., T. Ishikawa, R. Saleki, D. Rotin. 2002. Trafficking and cell surface stability of the epithelial Na+ channel expressed in epithelial madin-Darby canine kidney cells. J. Biol. Chem. 277:9772–9779

    Article  PubMed  CAS  Google Scholar 

  • Harper S.L., G.E. Begg, D.W. Speicher. 2001. Role of terminal nonhomologous domains in initiation of human red cell spectrin dimerization. Biochemistry 40:9935–9943

    Article  PubMed  CAS  Google Scholar 

  • Hortsch M., K.S. O’Shea, G. Zhao, F. Kim, Y. Vallejo, R.R. Dubreuil. 1998. A conserved role for L1 as a transmembrane link between neuronal adhesion and membrane cytoskleton assembly. Cell Adhesion & Communication. 5:61–73

    Article  CAS  Google Scholar 

  • Ikeda Y., K.A. Dick, M.R. Westherspoon, D. Gincel, et al. 2006. Spectrin mutations cause spinocerebellar ataxia type 5. Nat. Genetics. 38:184–190

    Article  CAS  Google Scholar 

  • Jackson M., W. Song, M.-Y. Liu, L. Jin, M. Dykes-Hoberg, C.-L.G. Lin, W.J. Bowers, H.J. Federoff, P.C. Sternweis, J.D. Rothstein. 2001. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature. 410:89–93

    Article  PubMed  CAS  Google Scholar 

  • Kalomiris E.L., L.Y.W. Bourguignon. 1988. Mouse T lymphoma cells contain a transmembrane glycoprotein (gp85) that binds ankyrin. J. Cell Biol. 106:319–327

    Article  PubMed  CAS  Google Scholar 

  • Kennedy S.P., S.L. Warren, B.G. Forget, J.S. Morrow. 1991. Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid β spectrin. J. Cell Biol. 114:267–277

    Article  Google Scholar 

  • Kizhatil K., V. Bennett. 2004. Lateral membrane biogenesis in human bronchial epithelial cells requires 190-kDa ankyrin-G. J. Biol. Chem. 279:16706–16714

    Article  PubMed  CAS  Google Scholar 

  • Komada M., P. Soriano. 2002. ΒIV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J. Cell Biol. 156:337–348

    Article  PubMed  CAS  Google Scholar 

  • Kordeli E., S. Lambert, V. Bennett. 1995. Ankyrin-G. J. Biol. Chem. 270:2352–2359

    Article  PubMed  CAS  Google Scholar 

  • Lacas-Gervais S., J. Guo, N. Strenzke, E. Scarfone, M. Kolpe, M. Jahkel, P. DeCamilli, T. Moser, M.N. Rasband, M. Solimena. 2004. BIVE1 spectrin stabilizes the nodes of Ranvier and axon initial segments. J. Cell Biol. 166:983–990

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E., W.J. Nelson. 1983. Erythrocyte and brain forms of spectrin in cerebellum: Distinct membrane-cytoskeleton domains in neurons. Science 220:1295–1297

    Article  PubMed  CAS  Google Scholar 

  • Lebovitz R.M., Takeyasu, K., D.M. Fambrough. 1989. Molecular characterization and expression of the (Na+ + K+)-ATPase α-subunit in Drosophila melanogaster. EMBO J. 8:193–202

    PubMed  CAS  Google Scholar 

  • Lee J., R. Coyne, R.R. Dubreuil, L.S.B. Goldstein, D. Branton. 1993. Cell shape and interaction defects in α-spectrin mutants of Drosophila melanogaster. J. Cell Biol. 123:1797–1809

    Article  PubMed  CAS  Google Scholar 

  • Lemaillet G., B. Walker, S. Lambert. 2003. Identification of a conserved ankyrin-binding motif in the family of sodium channel α subunits. J. Biol. Chem. 278:27333–27339

    Article  PubMed  CAS  Google Scholar 

  • Levine J., M. Willard. 1981. Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells. J. Cell Biol. 90:631–643

    Article  PubMed  CAS  Google Scholar 

  • Li Z., E.P. Burke, J.S. Frank, V. Bennett, K.D. Phillipson. 1993. The cardiac Na+-Ca+ exchanger binds to the cytoskeletal protein ankyrin. J. Biol. Chem. 268:11489–11491

    PubMed  CAS  Google Scholar 

  • Lopez C., S. Metral, D. Eladari, S. Drevensek, P. Gane, R. Chambrey, V. Bennett, J.-P. Cartron, C. LeVanKim, Y. Colin. 2005. The ammonium transporter RhBG. J. Biol. Chem. 280:8221–8228

    Article  PubMed  CAS  Google Scholar 

  • Lux, S.E., J. Palek, 1995. Disorders of the Red Cell Membrane. In: Blood: Principles and practice of hematology. R.I. Handin, S.E. Lux, T.P. Stossel editors. J.B. Lippincott Co., Philadelphia. 1701–1818

  • Matteis M.A.D., J.S. Morrow. 2000. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113:2331–2343

    PubMed  Google Scholar 

  • McKeown C., V. Praitis, J. Austin. 1998. sma-1 encodes a βH-spectrin homolog required for Caenorhabditis elegans morphogenesis. Development 125:2087–2098

    PubMed  CAS  Google Scholar 

  • McNeill H., Ozawa M., Kemler R., W.J. Nelson. 1990. Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62:309–316

    Article  PubMed  CAS  Google Scholar 

  • Mercier F., Teggio H., Deviliers G., Bataille D., P. Mangeat. 1989. Membrane-cytoskeleton dynamics in rat parietal cells: Mobilization of actin and spectrin upon stimulation of gastric acid secretion. J. Cell Biol. 108:441–453

    Article  PubMed  CAS  Google Scholar 

  • Mohler P.J., V. Bennett. 2005. Ankyrin-based cardiac arrhythmias: A new class of channelopathies due to loss of cellular targeting. Curr. Op. Cardiol. 20:189–193

    Article  Google Scholar 

  • Mohler P. J., J. Q. Davis, V. Bennett. 2005. Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PloS Biology 3: e423

    Article  PubMed  CAS  Google Scholar 

  • Mohler P.J., I. Rivolta, C. Napolitano, G. LeMaillet, S. Lambert, S.G. Priori, V. Bennett. 2004a. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of nav1.5 on the surface of cardiomyocytes. Proc. Natl. Acad. Sci. USA 101:17533–17538

    Article  CAS  Google Scholar 

  • Mohler P.J., J.-J. Schott, A.O. Gramolini, K.W. Dilly, S. Guatimoisim, W.H. duBell, L.-S. Song, K. Haurogne, F. Kyndt, M.E. Ali, T.B. Rogers, W.J. Lederer, D. Escande, H.L. Marec, V. Bennett. 2003. Ankyrin-B mutations causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 634–639

  • Mohler P.J., W. Yoon, V. Bennett. 2004b. Ankyrin-B targets B2-spectrin to an intracellular compartment in neonatal cardiomyocytes. J. Biol. Chem. 279:40185–40193

    Article  CAS  Google Scholar 

  • Molday L.L., Cook M.J., Kaupp U.B., R.S. Molday. 1990. The cGMP-gated cation-channel of bovine rod photoreceptor cells is associated with a 240 kDa protein exhibiting immunochemical cross-reactivity with spectrin. J. Biol. Chem. 265:18690–18695

    PubMed  CAS  Google Scholar 

  • Nelson W.J., R.W. Hammerton. 1989. A membrane-cytoskeletal complex containing Na+, K+-ATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK) cells: Implications for the biogenesis of epithelial cell polarity. J. Cell Biol. 108:893–902

    Article  PubMed  CAS  Google Scholar 

  • Nelson W.J., P.J. Veshnock. 1986. Dynamics of membrane skeleton (fodrin) organization during development of polarity in Madin-Darby Canine Kidney epithelial cells. J. Cell Biol. 103:1751–1765

    Article  PubMed  CAS  Google Scholar 

  • Nelson W.J., P.J. Veshnock. 1987a. Modulation of fodrin (membrane skeleton) stability by cell-cell contact in Madin-Darby Canine Kidney epithelial cells. J. Cell Biol. 104:1527–1537

    Article  CAS  Google Scholar 

  • Nelson W.J., P.J. Veshnock. 1987b. Ankyrin binding to (Na+ & K+) ATPase and implications for the organization of membrane domains in polarized cells. Nature. 328:533–536

    Article  CAS  Google Scholar 

  • Nicolas V., C.L.V. Kim, P. Gane, C. Birkenmeier, J.-P. Cartron, Y. Colin, I. Mouro-Chanteloup. 2003. Rh-RhAG/Ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rhnull-associated mutation. J. Biol. Chem. 278:25526–25533

    Article  PubMed  CAS  Google Scholar 

  • Nigg E. A., R. J. Cherry. 1980. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: Protein rotational diffusion measurements. Proc. Natl Acad. Sci. USA 77: 4702–4706

    Article  PubMed  CAS  Google Scholar 

  • Pan Z., T. Kao, Z. Horvath, J. Lemos, J.-Y. Sul, S.D. Cranstoun, V. Bennett, S.S. Scherer, E.C. Cooper. 2006. A common ankyrin-G-based mechanism retains KCNQ and Nav channels at electrically active domains of the axon. J. Neurosci. 26: 2599–2613

    Article  PubMed  CAS  Google Scholar 

  • Parkinson N.J., C.L. Olsson, J.L. Hallows, J. McKee-Johnson, B.P. Keogh, K. Noben-Trauth, S.G. Kujawa, B.L. Tempel. 2001. Mutant β-spectrin 4 causes auditory and motor neuropathies in quivering mice. Nature Gen. 29:61–65

    Article  CAS  Google Scholar 

  • Peters L.L., C.S. Birkenmeier, R.T. Bronson, R.A. White, S.E. Lux, E. Otto V. Bennett, A. Higgins, J.E. Barker. 1991. Purkinje cell degeneration associated with erythroid ankyrin deficiency in nb/nb mice. J. Cell Biol. 114:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Peters L.L., K.M. John, F.M. Lu, E.M. Eicher, A. Higgins, M. Yialamas, L.C. Turtzo, A.J. Otsuka, S.E. Lux. 1995. Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. J. Cell Biol. 130:313–330

    Article  PubMed  CAS  Google Scholar 

  • Phillips M.D., G.H. Thomas. 2006. Brush border spectrin is required for early endosome recycling in Drosophila. J. Cell Sci. 119:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Pradhan D., J.S. Morrow. 2002. The spectrin-ankyrin skeleton controls CD45 surface display and interleukin-2 production. Immunity 17:303–315

    Article  PubMed  CAS  Google Scholar 

  • Pradhan D., K. Tseng, C.D. Cianci, J.S. Morrow. 2004. Antibodies to β a I E2 spectrin identify in-homogeneities in the erythrocyte membrane skeleton. Blood Cells, Molecules, & Diseases 32:408–410

    Article  CAS  Google Scholar 

  • Rotin D., D. Bar-Sagi, H. O’Brodovich, J. Merilainen, V.P. Lehto, C.M. Canessa, B.C. Rossier, G.P. Downey. 1994. An SH3 binding region in the epithelial Na+ channel (alpharENaC) mediates its localization at the apical membrane. EMBO J. 13:4440–4450

    PubMed  CAS  Google Scholar 

  • Salomao M., X. An, X. Guo, W.B. Gratzer, N. Mohandas, A.J. Baines. 2006. Mammalian αI spectrin is a neofunctionalized polypeptide adapted to small highly deformable erythrocytes. Proc. Natl Acad. Sci. USA 103:643–648

    Article  PubMed  CAS  Google Scholar 

  • Scotland P., D. Zhou, H. Benveniste, V. Bennett. 1998. Nervous system defects of ankyrin B (-/-) mice suggest functional overlap between the cell adhesion molecule L1 and 440 kD ankyrin B in premyelinated axons. J. Cell Biol. 143:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Siddhanta A., A. Radulescu, M.C. Stankewich, J.S. Morrow, D. Shields. 2003. Fragmentation of the Golgi apparatus. J. Biol. Chem. 278:1957–1965

    Article  PubMed  CAS  Google Scholar 

  • Speicher D.W., V.T. Marchesi. 1984. Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311:177–180

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan Y., Elmer L., Davis J., Bennett V., K. Angelides. 1988. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333:177–180

    Article  PubMed  CAS  Google Scholar 

  • Stabach P.R., J.S. Morrow. 2000. Identification and characterization of βV spectrin, a mammalian ortholog of Drosophila βH spectrin. J. Biol. Chem. 275:21385–21395

    Article  PubMed  CAS  Google Scholar 

  • Stankewich M.C., W.T. Tse, L.L. Peters, Y. Ch’ng, K.M. John, P.R. Stabach, P. Devarajan, J.S. Morrow, S.E. Lux. 1998. A widely expressed βIII spectrin associated with Golgi and cytoplasmic vesicles. Proc. Natl. Acad. Sci. USA 95:14158–14163

    Article  PubMed  CAS  Google Scholar 

  • Tse W.T., Lecomte M.C., Costa F.F., Garbarz M., Feo C., Boivin P., Dhermy D., B.G. Forget. 1990. A point mutation in the β-spectrin gene associated with α-I/74 hereditary elliptocytosis - implications for the mechanism of spectrin dimer self association. J. Clin. Invest. 86:909–916

    Article  PubMed  CAS  Google Scholar 

  • Tse W.T., S.E. Lux. 1999. Red Blood cell membrane disorders. Br. J. Hematol. 104:2–13

    Article  CAS  Google Scholar 

  • Tse W.T., J. Tang, O. Jin, C. Korsgren, K.M. John, A.L. Kung, B. Gwynn, L.L. Peters, S.E. Lux. 2001. A new spectrin β4, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J. Biol. Chem. 276:23974–23985

    Article  PubMed  CAS  Google Scholar 

  • Tuvia S., M. Buhusi, L. Davis, M. Reedy, V. Bennett. 1999. Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+-homeostasis proteins. J. Cell Biol. 147:995–1007

    Article  PubMed  CAS  Google Scholar 

  • Wasenius V.-M., Saraste M., Salven P., Eramaa M., Holm L., V.-P. Lehto. 1989. Primary structure of the brain -spectrin. J. Cell Biol. 108:79–93

    Article  PubMed  CAS  Google Scholar 

  • Wechsler A., V.I. Teichberg. 1998. Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. EMBO J. 17:3931–3939

    Article  PubMed  CAS  Google Scholar 

  • Yan Y., E. Winograd, A. Viel, T. Cronin, S.C. Harrison, D. Branton. 1993. Crystal structure of the repetitive segments of spectrin. Science 262:2027–2030

    Article  PubMed  CAS  Google Scholar 

  • Yang Y., S. Lacas-Gervais, D.K. Morest, M. Solimena, M.N. Rasband. 2004. ΒIV spectrins are essential for membrane stability and the molecular organization of nodes of Ranvier. J. Neurosci. 24:7230–7240

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z., P. Devarajan, A.L. Dorfman, J.S. Morrow. 1998. Structure of the ankyrin-binding domain of -Na,K-ATPase. J. Biol. Chem. 273:18681–18684

    Article  PubMed  CAS  Google Scholar 

  • Zhou D., S. Lambert, P.L. Malen, S. Carpenter, L.M. Boland, V. Bennett. 1998. Ankyrin G is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J. Cell Biol. 143:1295–1304

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH GM49301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Dubreuil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubreuil, R.R. Functional Links between Membrane Transport and the Spectrin Cytoskeleton. J Membrane Biol 211, 151–161 (2006). https://doi.org/10.1007/s00232-006-0863-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0863-y

Keywords

Navigation