Skip to main content

Advertisement

Log in

QPY/RAH haplotypes of the GZMB gene are associated with natural killer cell cytotoxicity

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Granzyme B (GzmB) is a component of cytolytic granules within NK cells and is involved in several pathologies. It has previously been reported that there are three non-synonymous coding SNPs (rs8192917; Q48R, rs11539752; P88A, and rs2236338; Y245H) in the GZMB gene and that the QPY/RAH allele was clustered together close to the C-terminal α-helix. However, it is unknown whether the function of GzmB produced from NK cells is influenced by QPY/RAH polymorphism. The authors investigated the distribution of QPY/RAH polymorphism of the GZMB gene in a Japanese population (n = 106), and the involvement of Q48R polymorphism in NK cell cytotoxicity, degranulation, and production of GzmB. A strong linkage disequilibrium was observed among these SNPs, and NK cell cytotoxicity was influenced by rs8192917 (Q48R). Moreover, it found that R48-GzmB is a stable protein that accumulates to similar levels in activated NK cells as Q48-GzmB. rs8192917 polymorphism may influence antitumor activity and the effect of antitumor cellular immunotherapy. The authors expect that these new informations about QPY/RAH polymorphism of the GZMB gene could help to assess the impact of NK cell cytotoxicity in several pathologies and aid their treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aktas E, Kucuksezer UC, Bilgic S, Erten G, Deniz G (2009) Relationship between CD107a expression and cytotoxic activity. Cell Immunol 254(2):149–154

    Article  CAS  PubMed  Google Scholar 

  • Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294(1–2):15–22

    Article  CAS  PubMed  Google Scholar 

  • Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7(10):781–791

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  CAS  PubMed  Google Scholar 

  • Caligiuri MA (2008) Human natural killer cell. Blood 112(3):461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell KS, Hasegawa J (2013) Natural killer cell biology: an update and future directions. J Allergy Clin Immunol 132(3):536–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao LF, Krymskaya L, Tran V, Mi S, Jensen MC, Blanchard S, Kalos M (2010) Development and application of a multiplexable flow cytometry-based assay to quantify cell-mediated cytolysis. Cytometry A 77(6):534–545

    Article  PubMed  Google Scholar 

  • Collins FS, Brooks LD, Chakravarti A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8(12):1229–1231

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22(11):633–640

    Article  CAS  PubMed  Google Scholar 

  • Cullen SP, Brunet M, Martin SJ (2010) Granzymes in cancer and immunity. Cell Death Differ 17(4):616–623

    Article  CAS  PubMed  Google Scholar 

  • Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20(3):123–137

    Article  CAS  PubMed  Google Scholar 

  • Farag SS, Van Deusen JB, Fehniger TA, Caligiuri MA (2003) Biology and clinical impact of human natural killer cells. Int J Hematol 78(1):7–17

    Article  CAS  PubMed  Google Scholar 

  • Graubert TA, DiPersio JF, Russell JH, Ley TJ (1997) Perforin/granzyme-dependent and independent mechanisms are both important for the development of graft-versus-host disease after murine bone marrow transplantation. J Clin Invest 100(4):904–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48(2):361–372

    Article  CAS  PubMed  Google Scholar 

  • Higaki Y, Yamada O, Okamura T, Mizoguchi H, Kawashima M (2001) Granzyme-B-containing lymphocyte involvement in epidermal injury in graft-versus-host disease. Dermatology 202(2):94–98

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320

    Article  CAS  PubMed  Google Scholar 

  • Krzewski K, Gil-Krzewska A, Nguyen V, Peruzzi G, Coligan JE (2013) LAMP1/CD107a is required for efficient perforin delivery to lytic granules and NK-cell cytotoxicity. Blood 121(23):4672–4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, Serur D, Mouradian J, Schwartz JE, Suthanthiran M (2001) Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med 344(13):947–954

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lord SJ, Rajotte RV, Korbutt GS, Bleackley RC (2003) Granzyme B: a natural born killer. Immunol Rev 193:31–38

    Article  CAS  PubMed  Google Scholar 

  • McIlroy D, Cartron PF, Tuffery P, Dudoit Y, Samri A, Autran B, Vallette FM, Debré P, Theodorou I (2003) A triple-mutated allele of granzyme B incapable of inducing apoptosis. Proc Natl Acad Sci U S A 100(5):2562–2567

    Article  PubMed  PubMed Central  Google Scholar 

  • Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Ann Rev Immunol 19:197–223

    Article  CAS  Google Scholar 

  • Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103(3):491–500

    Article  CAS  PubMed  Google Scholar 

  • Müllbacher A, Waring P, Tha Hla R, Tran T, Chin S, Stehle T, Museteanu C, Simon MM (1999) Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes. Proc Natl Acad Sci U S A 96(24):13950–13955

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura M, Mitsunaga S, Akaza T, Mitomi Y, Tadokoro K, Juji T (1994) Protection against natural killer cells by interferon-gamma treatment of K562 cells cannot be explained by augmented major histocompatibility complex class I expression. Immunology 83(1):75–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oboshi W, Watanabe T, Matsuyama Y, Kobara A, Yukimasa N, Ueno I, Aki K, Tada T, Hosoi E (2016) The influence of NK cell-mediated ADCC: structure and expression of the CD16 molecule differ among FcγRIIIa-V158F genotypes in healthy Japanese subjects. Hum Immunol 77(2):165–171

    Article  CAS  PubMed  Google Scholar 

  • Pascoe MD, Marshall SE, Welsh KI, Fulton LM, Hughes DA (2000) Increased accuracy of renal allograft rejection diagnosis using combined perforin, granzyme B, and Fas ligand fine-needle aspiration immunocytology. Transplantation 69(12):2547–2553

    Article  CAS  PubMed  Google Scholar 

  • Peitsch MC, Tschopp J (1994) Granzyme B. Methods Enzymol 244:80–87

    Article  CAS  PubMed  Google Scholar 

  • Pinkoski MJ, Hobman M, Heibein JA, Tomaselli K, Li F, Seth P, Froelich CJ, Bleackley RC (1998) Entry and trafficking of granzyme B in target cells during granzyme B-perforin-mediated apoptosis. Blood 92(3):1044–1054

    CAS  PubMed  Google Scholar 

  • Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76(12):2421–2438

    CAS  PubMed  Google Scholar 

  • Ronday HK, van der Laan WH, Tak PP, de Roos JA, Bank RA, TeKoppele JM, Froelich CJ, Hack CE, Hogendoorn PC, Breedveld FC, Verheijen JH (2001) Human granzyme B mediates cartilage proteoglycan degradation and is expressed at the invasive front of the synovium in rheumatoid arthritis. Rheumatology (Oxford) 40(1):55–61

    Article  CAS  Google Scholar 

  • Rousalova I, Krepela E (2010) Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol 37(6):1361–1378

    CAS  PubMed  Google Scholar 

  • Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822):928–933

    Article  CAS  PubMed  Google Scholar 

  • Shabrish S, Gupta M, Madkaikar M (2016) A modified NK cell degranulation assay applicable for routine evaluation of NK cell function. J Immunol Res 2016:3769590

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi L, Kraut RP, Aebersold R, Greenberg AH (1992) A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J Exp Med 175(2):553–566

    Article  CAS  PubMed  Google Scholar 

  • Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, Takeda K, van Dommelen SL, Degli-Esposti MA, Hayakawa Y (2005) Activation of NK cell cytotoxicity. Mol Immunol 42(4):501–510

    Article  CAS  PubMed  Google Scholar 

  • Susanto O, Trapani JA, Brasacchio D (2012) Controversies in granzyme biology. Tissue Antigens 80(6):477–487

    Article  CAS  PubMed  Google Scholar 

  • Tak PP, Kummer JA, Hack CE, Daha MR, Smeets TJ, Erkelens GW, Meinders AE, Kluin PM, Breedveld FC (1994) Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue. Arthritis Rheum 37(12):1735–1743

    Article  CAS  PubMed  Google Scholar 

  • Trapani JA (1995) Target cell apoptosis induced by cytotoxic T cells and natural killer cells involves synergy between the pore-forming protein, perforin, and the serine protease, granzyme B. Aust NZ J Med 25(6):793–799

    Article  CAS  Google Scholar 

  • Trapani JA (2001) Granzymes: a family of lymphocyte granule serine proteases. Genome Biol 2(12):reviews 3014.1–reviews 3014.7

    Article  Google Scholar 

  • Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2(10):735–747

    Article  CAS  PubMed  Google Scholar 

  • Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  CAS  PubMed  Google Scholar 

  • Veugelers K, Motyka B, Goping IS, Shostak I, Sawchuk T, Bleackley RC (2006) Granule-mediated killing by granzyme B and perforin requires a mannose 6-phosphate receptor and is augmented by cell surface heparan sulfate. Mol Biol Cell 17(2):623–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76(5):887–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu JY, Xu GB, Chen SL (2009) A new method for SNP discovery. BioTechniques 46(3):201–208

    Article  CAS  PubMed  Google Scholar 

  • Zaritskaya L, Shurin MR, Sayers TJ, Malyguine AM (2010) New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Rev Vaccines 9(6):601–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiro Nakamura.

Ethics declarations

The study protocol was approved by the Ethics Committee of Kagawa Prefectural University of Health Sciences, and written consent was obtained from all participating subjects according to the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oboshi, W., Watanabe, T., Hayashi, K. et al. QPY/RAH haplotypes of the GZMB gene are associated with natural killer cell cytotoxicity. Immunogenetics 70, 29–36 (2018). https://doi.org/10.1007/s00251-017-1014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-017-1014-6

Keywords

Navigation