Skip to main content

Advertisement

Log in

Phenotype and expression profile analysis of Staphylococcus aureus biofilms and planktonic cells in response to licochalcone A

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is one of the most important pathogens in humans and animals. The formation of biofilm by S. aureus is considered an important mechanism of antimicrobial resistance. Therefore, finding effective drugs against the biofilm produced by S. aureus has been a high priority. Licochalcone A (LAA), a natural plant product, was reported to have antibacterial activities and showed good activity against all 21 tested strains of S. aureus biofilm and planktonic cells. To detect the possible molecular mechanism of LAA against S. aureus biofilm or planktonic cells, Affymetrix GeneChips were used to determine the global comparative transcription of S. aureus biofilm and planktonic cells triggered by treatment with sub-bactericidal and sub-inhibitory concentrations of LAA, respectively. LAA significantly altered (greater than a 2- or less than −2-fold change) the expression of 693 genes in planktonic cells and 817 genes in biofilm. The levels of genes encoding autolysis-associated proteins, cell wall proteins, pathogenic factors, protein synthesis genes, and enzymes involved in capsule synthesis were significantly altered in LAA-treated S. aureus. Furthermore, some differences observed in the microarray analysis were verified by real-time RT–PCR. To our knowledge, this is the first observation of phenotype and expression profiles of S. aureus biofilm and planktonic cells in response to LAA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdallah M, Chataigne G, Ferreira-Theret P, Benoliel C, Drider D, Dhulster P, Chihib NE (2014) Effect of growth temperature, surface type and incubation time on the resistance of Staphylococcus aureus biofilms to disinfectants. Appl Microbiol Biotechnol 98:2597–2607

    Article  CAS  PubMed  Google Scholar 

  • Blickwede M, Wolz C, Valentin-Weigand P, Schwarz S (2005) Influence of clindamycin on the stability of coa and fnbB transcripts and adherence properties of Staphylococcus aureus Newman. FEMS Microbiol Lett 252(1):73–78. doi:10.1016/j.femsle.2005.08.022

    Article  CAS  PubMed  Google Scholar 

  • Cameron DR, Ward DV, Kostoulias X, Howden BP, Moellering RC, Eliopoulos GM, Peleg AY (2012) Serine/threonine phosphatase Stp1 contributes to reduced susceptibility to vancomycin and virulence in Staphylococcus aureus. J Infect Dis 205(11):1677–1687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A (2001) Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob Agents Chemother 45(7):2023–2029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung AL, Zhang G (2002) Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front Biosci 7:d1825–d1842

    Article  CAS  PubMed  Google Scholar 

  • Chien Y-T, Manna AC, Projan SJ, Cheung AL (1999) SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J Biol Chem 274(52):37169–37176

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2005) Performance standards for antimicrobial susceptibility testing. Fifteenth informational supplement. Document M100-S15. CLSI/NCCLS, Wayne, PA, USA

  • Entenza J, Foster T, Eidhin DN, Vaudaux P, Francioli P, Moreillon P (2000) Contribution of clumping factor B to pathogenesis of experimental endocarditis due to Staphylococcus aureus. Infect Immun 68(9):5443–5446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao J, Stewart GC (2004) Regulatory elements of the Staphylococcus aureus protein A (Spa) promoter. J Bacteriol 186(12):3738–3748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hutter B, Schaab C, Albrecht S, Borgmann M, Brunner NA, Freiberg C, Ziegelbauer K, Rock CO, Ivanov I, Loferer H (2004) Prediction of mechanisms of action of antibacterial compounds by gene expression profiling. Antimicrob Agents Chemother 48(8):2838–2844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jang HJ, Chang MW, Toghrol F, Bentley WE (2008) Microarray analysis of toxicogenomic effects of triclosan on Staphylococcus aureus. Appl Microbiol Biotechnol 78:695–707

    Article  CAS  PubMed  Google Scholar 

  • Komatsuzawa H, Ohta K, Fujiwara T, Choi GH, Labischinski H, Sugai M (2001) Cloning and sequencing of the gene, fmtC, which affects oxacillin resistance in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 203(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49(3):807–821

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Cho HS, Kim Y, Kim JA, Banskota S, Cho MH, Lee J (2013) Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus. Appl Microbiol Biotechnol 97:4543–4552

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Zheng L, Landwehr C, Lunsford D, Holmes D, Ji Y (2005) Global regulation of gene expression by ArlRS, a two-component signal transduction regulatory system of Staphylococcus aureus. J Bacteriol 187(15):5486–5492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu XL, Xu YJ, Go ML (2008) Functionalized chalcones with basic functionalities have antibacterial activity against drug sensitive Staphylococcus aureus. Eur J Med Chem 43(8):1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Manna AC, Ingavale SS, Maloney M, Van Wamel W, Cheung AL (2004) Identification of sarV (SA2062), a new transcriptional regulator, is repressed by SarA and MgrA (SA0641) and involved in the regulation of autolysis in Staphylococcus aureus. J Bacteriol 186(16):5267–5280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McAleese F, Wu SW, Sieradzki K, Dunman P, Murphy E, Projan S, Tomasz A (2006) Overexpression of genes of the cell wall stimulon in clinical isolates of Staphylococcus aureus exhibiting vancomycin-intermediate-S. aureus-type resistance to vancomycin. J Bacteriol 188:1120–1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48(6):1429–1449

    Article  CAS  PubMed  Google Scholar 

  • Otto M (2012) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64(1):175–188. doi:10.1146/annurev-med-042711-140023

    Article  PubMed  Google Scholar 

  • Quiel A, Jürgen B, Piechotta G, Le Foll AP, Ziebandt AK, Kohler C, Köster D, Engelmann S, Erck C, Hintsche R, Wehland J, Hecker M, Schweder T (2010) Electrical protein array chips for the detection of staphylococcal virulence factors. Appl Microbiol Biotechnol 85:1619–1627

    Article  CAS  PubMed  Google Scholar 

  • Resch A, Rosenstein R, Nerz C, Götz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71(5):2663–2676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rice K, Peralta R, Bast D, de Azavedo J, McGavin MJ (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect Immun 69(1):159–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rohde H, Knobloch JK, Horstkotte MA, Mack D (2001) Correlation of Staphylococcus aureus icaADBC genotype and biofilm expression phenotype. J Clin Microbiol 39(12):4595–4596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sadykov MR, Bayles KW (2012) The control of death and lysis in staphylococcal biofilms: a coordination of physiological signals. Curr Opin Microbiol 15(2):211–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shibata S (2000) A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 120(10):849–862

    CAS  PubMed  Google Scholar 

  • Smith K, Gould KA, Ramage G, Gemmell CG, Hinds J, Lang S (2010) Influence of tigecycline on expression of virulence factors in biofilm-associated cells of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54(1):380–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Utaida S, Dunman P, Macapagal D, Murphy E, Projan S, Singh V, Jayaswal R, Wilkinson B (2003) Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology 149(10):2719–2732

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Yu L, Xiang H, Fan J, He L, Guo N, Feng H, Deng X (2008) Global transcriptional profiles of Staphylococcus aureus treated with berberine chloride. FEMS Microbiol Lett 279(2):217–225

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Jin Q, Xiang H, Wang W, Guo N, Zhang K, Tang X, Meng R, Feng H, Liu L, Wang X, Liang J, Shen F, Xing M, Deng X, Yu L (2011) Transcriptional and functional analysis of the effects of magnolol: inhibition of autolysis and biofilms in Staphylococcus aureus. PLoS ONE 6(10):e26833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wann ER, Gurusiddappa S, Höök M (2000) The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275(18):13863–13871

    Article  CAS  PubMed  Google Scholar 

  • Wu T-Y, Khor T, Saw C, Loh S, Chen A, Lim S, Park J, Cai L, Kong A-N (2011) Anti-inflammatory/anti-oxidative stress activities and differential regulation of Nrf2-mediated genes by non-polar fractions of tea Chrysanthemum zawadskii and licorice Glycyrrhiza uralensis. AAPS J 13(1):1–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Xing M, Shen F, Liu L, Chen Z, Guo N, Wang X, Wang W, Zhang K, Wu X, Wang X, Li Y, Sun S, Yu L (2012) Antimicrobial efficacy of the alkaloid harmaline alone and in combination with chlorhexidine digluconate against clinical isolates of Staphylococcus aureus grown in planktonic and biofilm cultures. Lett Appl Microbiol 54(5):475–482

    Article  CAS  PubMed  Google Scholar 

  • You YO, Choi NY, Kang SY, Kim KJ (2013) Antibacterial activity of Rhus javanica against methicillin-resistant Staphylococcus aureus. Evid Based Complement Alternat Med 2013:549207

    PubMed Central  PubMed  Google Scholar 

  • Yu L, Xiang H, Fan J, Wang D, Yang F, Guo N, Jin Q, Deng X (2008) Global transcriptional response of Staphylococcus aureus to rhein, a natural plant product. J Biotechnol 135(3):304–308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Important National Science and Technology Specific Projects (2012ZX10003002), the National Nature Science Foundation of China (No. 31172364; No. 31271951; No. 31000822), Program for New Century Excellent Talents in University (NCET-09-0434; NCET-13-0245), Fundamental Research Program of Shen Zhen (JCYJ20130401172016183; JCYJ20120616142424467), and Shenzhen Promotion Plan Basic Research Laboratory in 2012 (ZDSY20120616141302982).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Guo or Lu Yu.

Additional information

Fengge Shen and Xudong Tang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 904 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Tang, X., Wang, Y. et al. Phenotype and expression profile analysis of Staphylococcus aureus biofilms and planktonic cells in response to licochalcone A. Appl Microbiol Biotechnol 99, 359–373 (2015). https://doi.org/10.1007/s00253-014-6076-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6076-x

Keywords

Navigation