Skip to main content

Advertisement

Log in

Identification of Intracellular Bacteria in Adenoid and Tonsil Tissue Specimens: The Efficiency of Culture Versus Fluorescent In Situ Hybridization (FISH)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Monocyte/macrophage cells from human nasopharyngeal lymphoid tissue can be a source of bacteria responsible for human chronic and recurrent upper respiratory tract infection. Detection and characterization of pathogens surviving intracellularly could be a key element in bacteriological diagnosis of the infections as well as in the study on interactions between bacteria and their host. The present study was undertaken to assess the possibility of isolation of viable bacteria from the cells expressing monocyte/macrophage marker CD14 in nasopharyngeal lymphoid tissue. Overall, 74 adenotonsillectomy specimens (adenoids and tonsils) from 37 children with adenoid hypertrophy and recurrent infections as well as 15 specimens from nine children with adenoid hypertrophy, which do not suffer from upper respiratory tract infections (the control group), were studied. The suitability of immunomagnetic separation for extraction of CD14+ cells from lymphoid tissue and for further isolation of the intracellular pathogens has been shown. The coexistence of living pathogens including Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pyogenes with the bacteria representing normal nasopharyngeal microbiota inside CD14+ cells was demonstrated. Twenty-four strains of these pathogens from 32.4 % of the lysates of CD14+ cells were isolated. Concurrently, the fluorescent in situ hybridization (FISH) with a universal EUB388, and the species-specific probes demonstrated twice more often the persistence of these bacterial species in the lysates of CD14+ cells than conventional culture. Although the FISH technique appears to be more sensitive than traditional culture in the intracellular bacteria identification, the doubts on whether the bacteria are alive, and therefore, pathogenic would still exist without the strain cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amann R, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Ben-Yaakov A, Maly B, Abu-Ita R, Elidan J, Gross M (2011) Identification and immunolocalization of the innate immune receptor CD14 in hypertrophic adenoids and tonsils. Immunol Invest 40:150–159

    Article  CAS  PubMed  Google Scholar 

  3. Binks MJ, Temple B, Kirkham LA et al (2012) Molecular surveillance of true nontypeable Haemophilus influenzae: an evaluation of PCR screening assays. PLoS ONE 7:e34083. doi:10.1371/journal.pone.0034083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Clementi CF, Murphy TF (2011) Non-typeable Haemophilus influenzae invasion and persistence in the human respiratory tract. Front Cell Infect Microbiol 1:1. doi:10.3389/fcimb.2011.00001

    Article  PubMed Central  PubMed  Google Scholar 

  5. Craig JE, Cliffe A, Garnett K, High NJ (2001) Survival of nontypeable Haemophilus influenzae in macrophages. FEMS Microbiol Lett 203:55–61. doi:10.1016/S0378-1097(01)00328-7

    Article  CAS  PubMed  Google Scholar 

  6. Drago L, De Vecchi E, Torretta S et al (2012) Biofilm formation by bacteria isolated from upper respiratory tract before and after adenotonsillectomy. APMIS 120:410–416. doi:10.1111/j.1600-0463.2011.02846.x

    Article  PubMed  Google Scholar 

  7. Forsgen J, Samuelson A, Ahlin A et al (1994) Haemophilus influenzae resides and multiplies intracellularly in human adenoid tissue as demonstrated by in situ hybridization and bacterial viability assay. Infect Immun 62:673–679

    Google Scholar 

  8. Forsgren J, Samuelson A, Borrelli S et al (1996) Persistence of nontypeable Haemophilus influenzae in adenoid macrophages: a putative colonization mechanism. Acta Otolaryngol 116:766–773

    Article  CAS  PubMed  Google Scholar 

  9. Galli J, Caló L, Ardito F et al (2007) Biofilm formation by Haemophilus influenzae isolated from adeno-tonsil tissue samples, and its role in recurrent adenotonsillitis. Acta Otorhinolaryngol Ital 27:134–138

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Heiniger N, Spaniol V, Troller R, Vischer M, Aebil Ch (2007) Reservoir of Moraxella catarrhalis in human pharyngeal lymphoid tissue. J Infect Dis 196:1080–1087A. doi:10.1086/521194

    Article  CAS  PubMed  Google Scholar 

  11. Hertzén E, Johansson L, Wallin R et al (2010) M1 protein-dependent intracellular trafficking promotes persistence and replication of Streptococcus pyogenes in macrophages. J Innate Immun 6:534–545. doi:10.1159/000317635

    Article  Google Scholar 

  12. Hogardt M, Trebesius K, Geiger AM et al (2000) Specific and rapid detection by in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients. J Clin Microbiol 38:818–825

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Hotomi M, Arai J, Billal DS et al (2010) Nontypeable Haemophilus influenzae isolated from intractable acute otitis media internalized into cultured human epithelial cells. Auris Nasus Larynx 37:137–144. doi:10.1016/j.anl.2009.03.012

    Article  PubMed  Google Scholar 

  14. Isenberg HD (2004) Clinical microbiology procedures handbook, 2nd edn. American Society for Microbiology (ASM), Washington DC

    Google Scholar 

  15. Kahl BC (2013) Small colony variants (SCVs) of Staphylococcus aureus–a bacterial survival strategy. Infect Genet Evol. doi:10.1016/j.meegid.2013.05.016

    PubMed  Google Scholar 

  16. Khasriya R, Sathiananthamoorthy S, Ismail S et al (2013) The spectrum of bacterial colonisation associated with urothelial cells from patients with chronic lower urinary tract symptoms. J Clin Microbiol. doi:10.1128/JCM.03314-12

    PubMed Central  PubMed  Google Scholar 

  17. Kim R, Freeman J, Waldvogel-Thurlow S, Roberts S, Douglas R (2013) The characteristics of intramucosal bacteria in chronic rhinosinusitis: a prospective cross-sectional analysis. Int Forum Allergy Rhinol 3:349–354. doi:10.1002/alr.21117

    Article  PubMed  Google Scholar 

  18. Melter O, Radojevič B (2010) Small colony variants of Staphylococcus aureus–review. Folia Microbiol (Praha) 55:548–558. doi:10.1007/s12223-010-0089-3

    Article  CAS  Google Scholar 

  19. Morey P, Cano V, Marti-Lliteras P et al (2011) Evidence for a non-replicative intracellular stage of nontypable Haemophilus influenzae in epithelial cells. Microbiology 157:234–250. doi:10.1099/mic.0.040451-0

    Article  CAS  PubMed  Google Scholar 

  20. Nistico L, Gieseke A, Stoodley P, Hall-Stoodley L, Kerschner JE, Ehrlich GD (2009) Fluorescence “in situ” hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa. Methods Mol Biol 493:191–213. doi:10.1007/978-1-59745-523-7-12

    Article  CAS  PubMed  Google Scholar 

  21. Nistico L, Kreft R, Gieseke A et al (2011) Adenoid reservoir for pathogenic biofilm bacteria. J Clinic Microbiol 49:1411–1420. doi:10.1128/JCM.00756-10

    Article  CAS  Google Scholar 

  22. Podbielski A, Beckert S, Schattke R et al (2003) Epidemiology and virulence gene expression of intracellular group A streptococci in tonsils of recurrently infected adults. Int J Med Microbiol 293:179–190. doi:10.1078/1438-4221-00253

    Article  CAS  PubMed  Google Scholar 

  23. Proctor RA, von Eiff C, Kahl BC et al (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305. doi:10.1038/nrmicro1384

    Article  CAS  PubMed  Google Scholar 

  24. Rinsoz T, Duquenne P, Greff-Mirguet G, Oppliger A (2008) Application of real-time PCR for total airborne bacterial assessment: comparison with epifluorescence microscopy and culture-dependent methods. Atmos Environ 42:6767–6774. doi:10.1016/j.atmosenv.2008.05.018

    Article  CAS  Google Scholar 

  25. Sachse F, Becker K, von Eiff C, Metze D, Rudack C (2010) Staphylococcus aureus invades the epithelium in nasal polyposis and induces IL-6 in nasal epithelial cells in vitro. Allergy 65:1430–1437. doi:10.1111/j.1398-9995.2010.02381.x

    Article  CAS  PubMed  Google Scholar 

  26. Sinha B, Fraunholz M (2010) Staphylococcus aureus host cell invasion and post-invasion events. Int J Med Microbiol 300:170–175. doi:10.1016/j.ijmm.2009.08.019

    Article  PubMed  Google Scholar 

  27. Stępińska M, Trafny EA (2008) Diverse type III secretion phenotypes among Pseudomonas aeruginosa strains upon infection of murine macrophage-like and endothelial cell lines. Microb Pathog 44:448–458. doi:10.1016/j.micpath.2007.11.008

    Article  PubMed  Google Scholar 

  28. Swidsinski A, Göktas O, Bessler C et al (2008) Spatial organisation of microbiota in quiescent adenoiditis and tonsillitis. J Clin Pathol 60:253–260. doi:10.1136/jcp.2006.037309

    Article  Google Scholar 

  29. Thorton RB, Rigby PJ, Wiertsema SP et al (2011) Multi-species bacterial biofilm and intracellular infection in otitis media. BMC Pediatr 11:94. doi:10.1186/1471-2431-11-94

    Article  Google Scholar 

  30. Ueyama T, Kurono Y, Shirabe K, Takeshita M, Mogi G (1995) High incidence of Haemophilus influenzae in nasopharyngeal secretions and middle ear effusions as detected by PCR. J Clin Microbiol 33:1835–1838

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Vitovski S, Dunkin KT, Howard AJ et al (2002) Nontypeable Haemophilus influenzae in carriage and disease: a difference in IgA1 protease activity levels. JAMA 287:1699–1705. doi:10.1001/jama.287.13.1699

    Article  CAS  PubMed  Google Scholar 

  32. Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridization for the identification and characterization of prokaryotes. Curr Opin Microbiol 6:302–309. doi:10.1016/S1369-5274(03)00054-7

    Article  CAS  PubMed  Google Scholar 

  33. Winther B, Gross BC, Henley JO, Early SV (2009) Location of bacterial biofilm in the mucus overlying the adenoid by light microscopy. Arch Otolaryngol Head Neck Surg 135:1239–1245. doi:10.1001/archoto.2009.186

    Article  PubMed  Google Scholar 

  34. Zautner A, Krause M, Stropahl G et al (2010) Intracellular persisting Staphylococcus aureus is the major pathogen in recurrent tonsillitis. PLoS ONE 5:e9452. doi:10.1371/journal.pone.0009452

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Scientific project financed with funds for science in 2010–2013 as research project no. N N404 139838.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Trafny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stępińska, M., Olszewska-Sosińska, O., Lau-Dworak, M. et al. Identification of Intracellular Bacteria in Adenoid and Tonsil Tissue Specimens: The Efficiency of Culture Versus Fluorescent In Situ Hybridization (FISH). Curr Microbiol 68, 21–29 (2014). https://doi.org/10.1007/s00284-013-0436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0436-0

Keywords

Navigation