Skip to main content
Log in

Spatial pattern formation in microtubule post-translational modifications and the tight localization of motor-driven cargo

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Microtubule (MT) “age” can be interpreted as nucleotide state, lattice defects, or post-translational modification (PTM) such as acetylation and detyrosination. In all three cases, these have been recently shown to have functionally-important effects on the dynamics of MT arrays, and can present spatial and temporal heterogeneity. While mathematical models for MT array densities are well-established, here we present equations describing MT age, defined as the mean time since the MT’s building blocks (tubulin) were polymerized from their soluble dimer state. We derive the age equations using a mean first-passage time calculation and two complementary approaches: The continuum limit of spatial discretization model, and an adjoint operator approach. These equations can recapitulate the observation that the oldest (most de-tyrosinated) tubulin in axons is near the middle of axons during neuronal development in chick embryos. Furthermore, PTMs influence motor kinetics up to approximately twofold for off-rates and velocities. Our simulations demonstrate that this relatively weak dependence of motor kinetics is sufficient to target motor cargo to a specific location along the array. This localization is tightly peaked in a way that magnifies the relatively small signal of PTM spatial heterogeneity. Thus, MT age can produce long-range spatial patterning without feedbacks or diffusing signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ando D, Kattson M, Xu J, Gopinathan A (2014) Cooperative protofilament switching emerges from inter-motor interference in multiple-motor transport. Sci Rep 4:7255

    Article  Google Scholar 

  • Ando D, Korabel N, Huang KC, Gopinathan A (2015) Cytoskeletal network morphology regulates intracellular transport dynamics. Biophys J 109:1574–1582

    Article  Google Scholar 

  • Ambrose C, Allard J, Cytrynbaum E, Wasteneys G (2011) A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat Commun 2(430):1444

    Google Scholar 

  • Bicout DJ (1997) Green’s functions and first passage time distributions for dynamic instability of microtubules. Phys Rev E 56(6):6656–6667

    Article  Google Scholar 

  • Bicout DJ, Rubin RJ (1999) Classification of microtubule histories. Phys Rev E 59(1):913–920

    Article  Google Scholar 

  • Chou T, D’Orsogna M (2014) First passage times in biology. In: First-passage phenomena and their applications. World Scientific, Singapore, pp 306–345

  • Coombes CE, Yamamoto A, Kenzie MR, Odde DJ, Gardner MK (2013) Evolving tip structures can explain age-dependent microtubule catastrophe. Curr Biol 23(14):1342–1348

    Article  Google Scholar 

  • Cytrynbaum EN, Rodionov V, Mogilner A (2004) Computational model of dynein-dependent self-organization of microtubule asters. J Cell Sci 117(8):1381–1397

    Article  Google Scholar 

  • Dauvergne D, Edelstein-Keshet L (2015) Application of quasi-steady state methods to molecular motor transport on microtubules in fungal hyphae. J Theor Biol 379(C):47–58

    Article  MathSciNet  MATH  Google Scholar 

  • Dogterom M, Leibler S (1993) Physical aspects of the growth and regulation of microtubule structures. Phys Rev Lett 70(9):1347–1350

    Article  Google Scholar 

  • Eren EC, Dixit R, Gautam N (2015) Stochastic models for plant microtubule self-organization and structure. J Math Biol 71:1353–1385

    Article  MathSciNet  MATH  Google Scholar 

  • Goehring NW, Trong PK, Bois JS, Chowdhury D, Nicola EM, Hyman AA, Grill SW (2011) Polarization of PAR proteins by advective triggering of a pattern-forming system. Science 334(6059):1137–1141

    Article  Google Scholar 

  • Gou J, Edelstein-Keshet L, Allard J (2014) Mathematical model with spatially uniform regulation explains long-range bidirectional transport of early endosomes in fungal hyphae. Mol Biol Cell 25(16):2408–2415

    Article  Google Scholar 

  • Hendricks AG, Perlson E, Ross JL, Schroeder HW III, Tokito M, Holzbaur ELF (2010) Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr Biol 20(8):697–702

    Article  Google Scholar 

  • Hoerndli FJ, Maxfield DA, Brockie PJ, Mellem JE, Jensen E, Wang R, Madsen DM, Maricq AV (2013) Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and redistribution of AMPA receptors. Neuron 80(6):1421–1437

    Article  Google Scholar 

  • Huang CH, Tang M, Shi C, Iglesias PA, Devreotes PN (2013) An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat Cell Biol 15(11):1307–1316

    Article  Google Scholar 

  • Janson ME, de Dood ME, Dogterom M (2003) Dynamic instability of microtubules is regulated by force. J Cell Biol 161(6):1029–1034

    Article  Google Scholar 

  • Kalebic N, Martinez C, Perlas E, Hublitz P, Bilbao-Cortes D, Fiedorczuk K, Andolfo A, Heppenstalla PA (2013) Tubulin acetyltransferase \(\alpha \)TAT1 destabilizes microtubules independently of its acetylation activity. Mol Cell Biol 33(6):1114–1123

    Article  Google Scholar 

  • Katsuki T, Joshi R, Ailani D, Hiromi Y (2011) Compartmentalization within neurites: its mechanisms and implications. Dev Neurobiol 71(6):458–473

    Article  Google Scholar 

  • Komarova YA, Vorobjev IA, Borisy GG (2002) Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J Cell Sci 115:3527–3539

    Google Scholar 

  • Konstorum A, Sprowl SA, Waterman ML, Lander AD, Lowengrub JS (2013) Elaboration of a multispecies model of solid tumor growth with tumor-host interactions. In: International Conference on Theory and Application in Nonlinear Dynamics. Springer, New York, pp 295–303

  • Kunwar A, Tripathy SK, Xu J, Mattson MK, Anand P, Sigua R, Vershinin M, McKenney RJ, Yu CC, Mogilner A, Gross SP (2011) Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport. Proc Natl Acad Sci USA 108(47):1–18

    Article  Google Scholar 

  • Leidel C, Longoria RA, Gutierrez FM, Shubeita GT (2012) Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport. Biophys J 103(3):492–500

    Article  Google Scholar 

  • Liang W, Li Q, Faysal KM, King SJ, Gopinathan A, Xu J (2016) Microtubule defects influence kinesin-based transport in vitro. Biophys J 110:2229–2240

    Article  Google Scholar 

  • Lin C, Steinberg G, Ashwin P (2011) Bidirectional transport and pulsing states in a multi-lane ASEP model. J Stat Mech 2011:P9027

  • Mahalwar P, Walderich B, Singh AP, Nüsslein-Volhard C (2014) Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish. Science 345(6202):1362–1364

    Article  Google Scholar 

  • Mogilner A, Allard J, Wollman R (2012) Cell polarity: quantitative modeling as a tool in cell biology. Science 336(6078):175–179

    Article  MathSciNet  MATH  Google Scholar 

  • Mori Y, Jilkine A, Edelstein-Keshet L (2008) Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys J 94(9):3684–3697

    Article  Google Scholar 

  • Muller MJI, Klumpp S, Lipowsky R (2010) Bidirectional transport by molecular motors: enhanced processivity and response to external forces. Biophys J 98(11):2610–2618

    Article  Google Scholar 

  • Newby J, Bressloff P (2010) Local synaptic signaling enhances the stochastic transport of motor-driven cargo in neurons. Phys Biol 7:036004

    Article  Google Scholar 

  • Seetapun D, Odde DJ (2010) Cell-length-dependent microtubule accumulation during polarization. Curr Biol 20(11):979–988

    Article  Google Scholar 

  • Shubeita GT, Gross SP (2012) 4.15 Intracellular transport: relating single-molecule properties to in vivo function. In: Comprehensive biophysics. Elsevier, Amsterdam, pp 287–297

  • Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16(4):335–344

    Article  Google Scholar 

  • Soppina V, Rai AK, Ramaiya AJ, Barak P, Mallik R (2009) Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc Natl Acad Sci USA 106(46):19,381–19,386

    Article  Google Scholar 

  • Tropini C, Roth E, Zanic M, Gardner M, Howard J (2012) Islands containing slowly hydrolyzable GTP analogs promote microtubule rescues. PLoS One 7(1):e30103

    Article  Google Scholar 

  • Umulis DM, Othmer HG (2013) Mechanisms of scaling in pattern formation. Development 140(24):4830–4843

    Article  Google Scholar 

  • Vanburen V, Cassimeris L, Odde DJ (2005) Mechanochemical model of microtubule structure and self-assembly kinetics. Biophys J 89(5):2911–2926

    Article  Google Scholar 

  • White D, de Vries G, Martin J, Dawes A (2015) Microtubule patterning in the presence of moving motor proteins. J Theor Biol 382:81–90

    Article  MATH  Google Scholar 

  • Yarahmadian S, Barker B, Zumbrun K, Shaw SL (2010) Existence and stability of steady states of a reaction convection diffusion equation modeling microtubule formation. J Math Biol 63(3):459–492

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Yoichiro Mori, Jay Newby and Frederic Wan for valuable discussion. This work was supported by NSF CAREER award DMS-1454739 to JA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Allard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iniguez, A., Allard, J. Spatial pattern formation in microtubule post-translational modifications and the tight localization of motor-driven cargo. J. Math. Biol. 74, 1059–1080 (2017). https://doi.org/10.1007/s00285-016-1053-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-1053-x

Keywords

Mathematics Subject Classification

Navigation