Skip to main content
Log in

Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2)

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Mucolipins (transient receptor potential mucolipin, TRPML) and polycystin-2 proteins (transient receptor potential polycystin, TRPP) constitute two small families of cation channels with motif and sequence similarities to the transient receptor potential (TRP) class of non-selective cation channels. Genetic defects in TRPML1 and TRPML3 in humans and in animal models cause the accumulation of large vacuoles, leading to a variety of cellular phenotypes including neurological and neurosensory deficiencies. TRPML1 is a Ca2+-, K+-, and Na+-permeable cation channel sensitive to pH changes, and regulates a critical step in the maturation of late endosomes to lysosomes. Mutations of TRPP2 in humans result in autosomal dominant polycystic kidney disease. Molecular studies have demonstrated that TRPP2 and TRPP3 proteins function as Ca2+-regulated, non-selective cation channels. During embryogenesis TRPP2 is active in node monocilia and plays a role in the establishment of left-right asymmetry. Recent results have indicated that TRPP2 interacts with polycystin-1 and that their interaction is important for their function as mechanosensitive channels at the primary cilium of renal epithelial cells. The interaction of polycystin family members appears to be conserved and is critical for fertilization and mating behavior. An emerging concept from the studies of the polycystin family is that they function as cation-influx based devices for sensing extracellular signals on ciliated structures. Here we review the function of TRPML1 and TRPP2 as representative members of these families, focusing on the genetics, physiology, and biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TRPML:

Mucolipin gene family

TRPP:

Polycystin 2 gene family

TM:

Transmembrane segment

References

  1. Altarescu G, Sun M, Moore DF, Smith JA, Wiggs EA, Solomon BI, Patronas NJ, Frei KP, Gupta S, Kaneski CR, Quarrell OW, Slaugenhaupt SA, Goldin E, Schiffmann R (2002) The neurogenetics of mucolipidosis type IV. Neurology 59:306–313

    CAS  PubMed  Google Scholar 

  2. Bach G (2001) Mucolipidosis type IV. Mol Genet Metab 73:197–203

    Article  CAS  PubMed  Google Scholar 

  3. Bach G, Cohen MM, Kohn G (1975) Abnormal ganglioside accumulation in cultured fibroblasts from patients with mucolipidosis IV. Biochem Biophys Res Commun 66:1483–1490

    Article  CAS  PubMed  Google Scholar 

  4. Bach G, Ziegler M, Kohn G, Cohen MM (1977) Mucopolysaccharide accumulation in cultured skin fibroblasts derived from patients with mucolipidosis IV. Am J Hum Genet 29:610–618

    CAS  PubMed  Google Scholar 

  5. Bargal R, Bach G (1988) Phospholipids accumulation in mucolipidosis IV cultured fibroblasts. J Inherit Metab Dis 11:144–150

    CAS  PubMed  Google Scholar 

  6. Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, Raas-Rothschild A, Glusman G, Lancet D, Bach G (2000) Identification of the gene causing mucolipidosis type IV. Nat Genet 26:118–123

    Article  CAS  PubMed  Google Scholar 

  7. Barr MM, Sternberg PW (1999) A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401:386–389

    Article  CAS  PubMed  Google Scholar 

  8. Barr MM, DeModena J, Braun D, Nguyen CQ, Hall DH, Sternberg PW (2001) The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol 11:1341–1346

    Article  CAS  PubMed  Google Scholar 

  9. Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN, Germino FJ, Germino GG (2002) PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109:157–168

    Article  CAS  PubMed  Google Scholar 

  10. Cable J, Steel KP (1998) Combined cochleo-saccular and neuroepithelial abnormalities in the Varitint-waddler-J (VaJ) mouse. Hear Res 123:125–36

    Article  CAS  PubMed  Google Scholar 

  11. Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274:28557–28565

    Article  CAS  PubMed  Google Scholar 

  12. Cai Y, Anyatonwu G, Okuhara D, Lee KB, Yu Z, Onoe T, Mei CL, Qian Q, Geng L, Wiztgall R, Ehrlich BE, Somlo S (2004) Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812. J Biol Chem 279:19987–19995

    Article  CAS  PubMed  Google Scholar 

  13. Caimi L, Tettamanti G, Berra B, Sale FO, Borrone C, Gatti R, Durand P, Martin JJ (1982) Mucolipidosis IV, a sialolipidosis due to ganglioside sialidase deficiency. J Inherit Metab Dis 5:218–224

    CAS  PubMed  Google Scholar 

  14. Chauvet V, Qian F, Boute N, Cai Y, Phakdeekitacharoen B, Onuchic LF, Attie-Bitach T, Guicharnaud L, Devuyst O, Germino GG, Gubler MC (2002) Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. Am J Pathol 160:973–983

    CAS  PubMed  Google Scholar 

  15. Chen XZ, Vassilev PM, Basora N, Peng JB, Nomura H, Segal Y, Brown EM, Reeders ST, Hediger MA, Zhou J (1999) Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 401:383–386

    Article  CAS  PubMed  Google Scholar 

  16. Chen XZ, Segal Y, Basora N, Guo L, Peng JB, Babakhanlou H, Vassilev PM, Brown EM, Hediger MA, Zhou J (2001) Transport function of the naturally occurring pathogenic polycystin-2 mutant, R742X. Biochem Biophys Res Commun 282:1251–1256

    Article  CAS  PubMed  Google Scholar 

  17. Cloudman AM, Bunker LE (1945) The varitint-waddler mouse. J Hered 36:258–263

    Google Scholar 

  18. Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  CAS  PubMed  Google Scholar 

  19. Delmas P, Nomura H, Li X, Lakkis M, Luo Y, Segal Y, Fernandez-Fernandez JM, Harris P, Frischauf AM, Brown DA, Zhou J (2002) Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. J Biol Chem 277:11276–11283

    Article  CAS  PubMed  Google Scholar 

  20. Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci USA 99:14994–14999

    Article  CAS  PubMed  Google Scholar 

  21. EPKDC (1994) The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European polycystic kidney disease consortium. Cell 78:725

    Article  Google Scholar 

  22. Fares H, Greenwald I (2001) Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat Genet 28:64–68

    Article  CAS  PubMed  Google Scholar 

  23. Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C, Bradley J, Ibraghimov-Beskrovnaya O, Klinger K, Sandford R (2000) Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J Am Soc Nephrol 11:814–827

    CAS  PubMed  Google Scholar 

  24. Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554–565

    Article  CAS  PubMed  Google Scholar 

  25. Gao Z, Ruden DM, Lu X (2003) PKD2 cation channel is required for directional sperm movement and male fertility. Curr Biol 13:2175–2178

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA 98:1182–1187

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez-Perrett S, Batelli M, Kim K, Essafi M, Timpanaro G, Moltabetti N, Reisin IL, Arnaout MA, Cantiello HF (2002) Voltage dependence and pH regulation of human polycystin-2-mediated cation channel activity. J Biol Chem 277:24959–24966

    Article  CAS  PubMed  Google Scholar 

  28. Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG (2000) Co-assembly of polycystin-1 and −2 produces unique cation-permeable currents. Nature 408:990–994

    Article  CAS  PubMed  Google Scholar 

  29. Hersh BM, Hartwieg E, Horvitz HR (2002) The Caenorhabditis elegans mucolipin-like gene cup-5 is essential for viability and regulates lysosomes in multiple cell types. Proc Natl Acad Sci USA 99:4355–4360

    Article  CAS  PubMed  Google Scholar 

  30. Hidaka S, Konecke V, Osten L, Witzgall R (2004) PIGEA-14, a novel coiled-coil protein affecting the intracellular distribution of polycystin-2. J Biol Chem 279:35009–35016

    Article  CAS  PubMed  Google Scholar 

  31. Hu J, Barr MM (2005) ATP-2 interacts with the PLAT domain of LOV-1 and is involved in Caenorhabditis elegans polycystin signaling. Mol Biol Cell 16:458–469

    Google Scholar 

  32. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10:151–160

    CAS  PubMed  Google Scholar 

  33. Hughes J, Ward CJ, Aspinwall R, Butler R, Harris PC (1999) Identification of a human homologue of the sea urchin receptor for egg jelly: a polycystic kidney disease-like protein. Hum Mol Genet 8:543–549

    Google Scholar 

  34. Kierszenbaum AL (2004) Polycystins: what polycystic kidney disease tells us about sperm. Mol Reprod Dev 67:385–388

    Google Scholar 

  35. Kottgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Hopker K, Simmen KC, Tschucke CC, Sandford R, Kim E, Thomas G, Walz G (2005) Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J 24:705–716

    Article  PubMed  Google Scholar 

  36. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S (2002) Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4:191–197

    Article  CAS  PubMed  Google Scholar 

  37. Kumanovics A, Levin G, Blount P (2002) Family ties of gated pores: evolution of the sensor module. FASEB J 16:1623–1629

    Article  CAS  PubMed  Google Scholar 

  38. LaPlante JM, Falardeau J, Sun M, Kanazirska M, Brown EM, Slaugenhaupt SA, Vassilev PM (2002) Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett 532:183–187

    Article  CAS  PubMed  Google Scholar 

  39. LaPlante JM, Ye CP, Quinn SJ, Goldin E, Brown EM, Slaugenhaupt SA, Vassilev PM (2004) Functional links between mucolipin-1 and Ca2+-dependent membrane trafficking in mucolipidosis IV. Biochem Biophys Res Commun 322:1384–1391

    Article  CAS  PubMed  Google Scholar 

  40. Li Q, Liu Y, Zhao W, Chen XZ (2002) The calcium-binding EF-hand in polycystin-L is not a domain for channel activation and ensuing inactivation. FEBS Lett 516:270–278

    CAS  PubMed  Google Scholar 

  41. Li A, Tian X, Sung SW, Somlo S (2003) Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. Genomics 81:596–608

    Article  CAS  PubMed  Google Scholar 

  42. Li Vecchi M, Cianfrone P, Damiano R, Fuiano G (2003) Infertility in adults with polycystic kidney disease. Nephrol Dial Transplant 18:190–191

    Article  PubMed  Google Scholar 

  43. Loftus SK, Larson DM, Baxter LL, Antonellis A, Chen Y, Wu X, Jiang Y, Bittner M, Hammer JA 3rd, Pavan WJ (2002) Mutation of melanosome protein RAB38 in chocolate mice. Proc Natl Acad Sci USA 99:4471–4476

    Article  CAS  PubMed  Google Scholar 

  44. Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J (2003) Native polycystin 2 functions as a plasma membrane Ca2+-permeable cation channel in renal epithelia. Mol Cell Biol 23:2600–2607

    Article  CAS  PubMed  Google Scholar 

  45. Matesic LE, Yip R, Reuss AE, Swing DA, O’Sullivan TN, Fletcher CF, Copeland NG, Jenkins NA (2001) Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice. Proc Natl Acad Sci USA 98:10238–10243

    Article  CAS  PubMed  Google Scholar 

  46. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73

    Article  CAS  PubMed  Google Scholar 

  47. Mengerink KJ, Moy GW, Vacquier VD (2002) suREJ3, a polycystin-1 protein, is cleaved at the GPS domain and localizes to the acrosomal region of sea urchin sperm. J Biol Chem 277:943–948

    Article  CAS  PubMed  Google Scholar 

  48. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    CAS  PubMed  Google Scholar 

  49. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

    PubMed  Google Scholar 

  50. Moy GW, Mendoza LM, Schulz JR, Swanson WJ, Glabe CG, Vacquier VD (1996) The sea urchin sperm receptor for egg jelly is a modular protein with extensive homology to the human polycystic kidney disease protein, PKD1. J Cell Biol 133:809–817

    Article  CAS  PubMed  Google Scholar 

  51. Murakami M, Ohba T, Xu F, Shida S, Satoh E, Ono K, Miyoshi I, Watanabe H, Ito H, Iijima T (2005) Genomic organization and functional analysis of murine PKD2L1. J Biol Chem 280:5626–5635

    Article  CAS  PubMed  Google Scholar 

  52. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  CAS  PubMed  Google Scholar 

  53. Neill AT, Moy GW, Vacquier VD (2004) Polycystin-2 associates with the polycystin-1 homolog, suREJ3, and localizes to the acrosomal region of sea urchin spermatozoa. Mol Reprod Dev 67:472–477

    Article  CAS  PubMed  Google Scholar 

  54. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380

    Article  CAS  PubMed  Google Scholar 

  55. Peden EM, Barr MM (2005) The KLP-6 kinesin is required for male mating behaviors and polycystin localization in Caenorhabditis elegans. Curr Biol 15:394–404

    Article  CAS  PubMed  Google Scholar 

  56. Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943

    Article  CAS  PubMed  Google Scholar 

  57. Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183

    Article  CAS  PubMed  Google Scholar 

  58. Qian F, Boletta A, Bhunia AK, Xu H, Liu L, Ahrabi AK, Watnick TJ, Zhou F, Germino GG (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci USA 99:16981–16986

    Article  CAS  PubMed  Google Scholar 

  59. Raychowdhury MK, Gonzalez-Perrett S, Montalbetti N, Timpanaro GA, Chasan B, Goldmann WH, Stahl S, Cooney A, Goldin E, Cantiello HF (2004) Molecular pathophysiology of mucolipidosis type IV: pH dysregulation of the mucolipin-1 cation channel. Hum Mol Genet 13:617–627

    Google Scholar 

  60. Scheffers MS, Le H, van der Bent P, Leonhard W, Prins F, Spruit L, Breuning MH, de Heer E, Peters DJ (2002) Distinct subcellular expression of endogenous polycystin-2 in the plasma membrane and Golgi apparatus of MDCK cells. Hum Mol Genet 11:59–67

    Article  CAS  PubMed  Google Scholar 

  61. Slaugenhaupt SA (2002) The molecular basis of mucolipidosis type IV. Curr Mol Med 2:445–450

    Article  CAS  PubMed  Google Scholar 

  62. Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno JS Jr, Bove C, Kaneski CR, Nagle J, Bromley MC, Colman M, Schiffmann R, Slaugenhaupt SA (2000) Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet 9:2471–2478

    Article  CAS  PubMed  Google Scholar 

  63. Treusch S, Knuth S, Slaugenhaupt SA, Goldin E, Grant BD, Fares H (2004) Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc Natl Acad Sci USA 101:4483–4488

    Article  CAS  PubMed  Google Scholar 

  64. Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci USA 94:6965–6970

    Article  CAS  PubMed  Google Scholar 

  65. Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci USA 96:3934–3939

    Article  CAS  PubMed  Google Scholar 

  66. Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye C, Brown EM, Hediger MA, Zhou J (2001) Polycystin-2 is a novel cation channel implicated in defective intracellular Ca2+ homeostasis in polycystic kidney disease. Biochem Biophys Res Commun 282:341–350

    Article  CAS  PubMed  Google Scholar 

  67. Veldhuisen B, Spruit L, Dauwerse HG, Breuning MH, Peters DJ (1999) Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur J Hum Genet 7:860–872

    CAS  PubMed  Google Scholar 

  68. Venglarik CJ, Gao Z, Lu X (2004) Evolutionary conservation of Drosophila polycystin-2 as a calcium-activated cation channel. J Am Soc Nephrol 15:1168–1177

    Article  CAS  PubMed  Google Scholar 

  69. Watnick TJ, Jin Y, Matunis E, Kernan MJ, Montell C (2003) A flagellar polycystin-2 homolog required for male fertility in Drosophila. Curr Biol 13:2179–2184

    Article  CAS  PubMed  Google Scholar 

  70. Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, Hammer JA 3rd (2002) Identification of an organelle receptor for myosin-Va. Nat Cell Biol 4:271–278

    Article  CAS  PubMed  Google Scholar 

  71. Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  CAS  PubMed  Google Scholar 

  72. Yuasa T, Venugopal B, Weremowicz S, Morton CC, Guo L, Zhou J (2002) The sequence, expression, and chromosomal localization of a novel polycystic kidney disease 1-like gene, PKD1L1, in human. Genomics 79:376–386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Erica Allen, Gregory Germino, Kuni Iwasa, and John Northup for their comments on the manuscript. R01 DK062199 and Scientist Development grant of American Heart Association (FQ) and intramural program of the National Institute on Deafness and Other Communication Disorders (KNT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Qian or Konrad Noben-Trauth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, F., Noben-Trauth, K. Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2). Pflugers Arch - Eur J Physiol 451, 277–285 (2005). https://doi.org/10.1007/s00424-005-1469-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1469-4

Keywords

Navigation