Skip to main content
Log in

Hydrogen peroxide as an endothelium-derived hyperpolarizing factor

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The endothelium plays an important role in maintaining cardiovascular homeostasis by synthesizing and releasing several vasodilating substances, including vasodilator prostaglandins, nitric oxide (NO), and endothelium-derived hyperpolarizing factor (EDHF). Since the first report on the existence of EDHF, several substances/mechanisms have been proposed for the nature of EDHF, including epoxyeicosatrienoic acids (metabolites of arachidonic P450 epoxygenase pathway), K ions, and electrical communications through myoendothelial gap junctions. We have demonstrated that endothelium-derived hydrogen peroxide (H2O2) is an EDHF in animals and humans. For the synthesis of H2O2/EDHF, endothelial NO synthase system that is functionally coupled with Cu,Zn-superoxide dismutase plays a crucial role. Importantly, endothelium-derived H2O2 plays important protective roles in the coronary circulation, including coronary autoregulation, protection against myocardial ischemia/reperfusion injury, and metabolic coronary vasodilatation. Indeed, our H2O2/EDHF theory demonstrates that endothelium-derived H2O2, another reactive oxygen species in addition to NO, plays important roles as a redox-signaling molecule to cause vasodilatation as well as cardioprotection. In this review, we summarize our current knowledge on H2O2/EDHF regarding its identification and mechanisms of synthesis and actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schoneich C, Cohen RA (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207

    Article  CAS  PubMed  Google Scholar 

  2. Barlow RS, White RE (1998) Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 275:H1283–H1289

    CAS  PubMed  Google Scholar 

  3. Barlow RS, El-Mowafy AM, White RE (2000) H2O2 opens BKCa channels via the PLA2-arachidonic acid signaling cascade in coronary artery smooth muscle. Am J Physiol 279:H475–H483

    CAS  Google Scholar 

  4. Beny JL, von der Weid PY (1991) Hydrogen peroxide: an endogenous smooth muscle cell hyperpolarizing factor. Biochem Biophys Res Commun 176:378–384

    Article  CAS  PubMed  Google Scholar 

  5. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853

    Article  CAS  PubMed  Google Scholar 

  6. Bolton TB, Lang RJ, Takewaki T (1984) Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J Physiol 351:549–572

    CAS  PubMed  Google Scholar 

  7. Burke TM, Wolin MS (1987) Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. Am J Physiol 252:H721–732

    CAS  PubMed  Google Scholar 

  8. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, Weston AH (2002) EDHF: bringing the concepts together. Trends Pharmacol Sci 23:374–380

    Article  CAS  PubMed  Google Scholar 

  9. Campbell WB, Gebremedhin D, Pratt PF, Harder DR (1996) Identification of epoxyeocosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 78:415–423

    CAS  PubMed  Google Scholar 

  10. Chaytor AT, Edwards DH, Bakker LM, Griffith TM (2003) Distinct hyperpolarizing and relaxant roles for gap junctions and endothelium-derived H2O2 in NO-independent relaxations of rabbit arteries. Proc Natl Acad Sci USA 100:15212–15217

    Article  CAS  PubMed  Google Scholar 

  11. Chen G, Suzuki H, Weston AH (1988) Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol 95:1165–1174

    CAS  PubMed  Google Scholar 

  12. Didion SP, Ryan MJ, Didion LA, Fegan PE, Sigmund CD, Faraci FM (2002) Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ Res 91:938–944

    Article  CAS  PubMed  Google Scholar 

  13. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396:269–272

    Article  CAS  PubMed  Google Scholar 

  14. Ellis A, Triggle CR (2003) Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarization and vascular tone. Can J Physiol Pharmacol 81:1013–1028

    Article  CAS  PubMed  Google Scholar 

  15. Faraci FM, Didion SP (2004) Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24:1367–1373

    Article  CAS  PubMed  Google Scholar 

  16. Feletou M, Vanhoutte PM (1988) Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol 93:515–524

    CAS  PubMed  Google Scholar 

  17. Feletou M, Vanhoutte PM (2004) EDHF: new therapeutic targets? Pharmacol Res 49:565–580

    Article  CAS  PubMed  Google Scholar 

  18. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R (1999) Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 401:493–497

    Article  CAS  PubMed  Google Scholar 

  19. Fukai T, Folz RJ, Landmesser U, Harrison DG (2002) Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 55:239–249

    Article  CAS  PubMed  Google Scholar 

  20. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  CAS  PubMed  Google Scholar 

  21. Griffith TM, Chaytor AT, Taylor HJ, Giddings BD, Edwards DH (2002) cAMP facilitates EDHF-type relaxations in conduit arteries by enhancing electrotonic conduction via gap junctions. Proc Natl Acad Sci USA 99:6392–6397

    Article  CAS  PubMed  Google Scholar 

  22. Griffith TM, Chaytor AT, Edwards DH (2004) The obligatory link: role of gap junctional communication in endothelium-dependent smooth muscle hyperpolarization. Pharmacol Res 49:551–564

    Article  CAS  PubMed  Google Scholar 

  23. Griffith TM, Chaytor AT, Bakker LM, Edwards DH (2005) 5-Methyltetrahydrofolate and tetrahydrobiopterin can modulate electrotonically mediated endothelium-dependent vascular relaxation. Proc Natl Acad Sci USA 102:7008–7013

    Article  CAS  PubMed  Google Scholar 

  24. Gutterman DD, Miura H, Liu Y (2005) Redox modulation of vascular tone. Focus of potassium channel mechanisms of dilation. Arterioscler Thromb Vasc Biol 25:671–678

    Article  CAS  PubMed  Google Scholar 

  25. Hatoum OA, Binion DG, Miura H, Telford G, Otterson MF, Gutterman DD (2005) Role of hydrogen peroxide in ACh-induced dilation of human submucosal intestinal microvessels. Am J Physiol 288:H48–54

    CAS  Google Scholar 

  26. Hattori T, Kajikuri J, Katsuya H, Itoh T (2003) Effects of H2O2 on membrane potential of smooth muscle cells in rabbit mesenteric resistance artery. Eur J Pharmacol 464:101–109

    Article  CAS  PubMed  Google Scholar 

  27. Iida Y, Katusic ZS (2000) Mechanisms of cerebral arterial relaxations to hydrogen peroxide. Stroke 31:2224–2230

    CAS  PubMed  Google Scholar 

  28. Inokuchi K, Hirooka Y, Shimokawa H, Sakai K, Kishi T, Ito K, Kimura Y, Takeshita A (2003) Role of endothelium-derived hyperpolarizing factor in human forearm circulation. Hypertension 42:919–924

    Article  CAS  PubMed  Google Scholar 

  29. Krishna MC, Grahame DA, Samuni A, Mitchell JB, Russo A (1992) Oxoammonium cation intermediate in the nitroxide-catalyzed dismutation of superoxide. Proc Natl Acad Sci USA 89:5537–5541

    Article  CAS  PubMed  Google Scholar 

  30. Kuriyama H, Suzuki H (1978) The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery. Br J Pharmacol 64:493–501

    CAS  PubMed  Google Scholar 

  31. Lacza Z, Puskar M, Kis B, Perciaccante JV, Miller AW, Busija DW (2002) Hydrogen peroxide acts as an EDHF in the piglet pial vasculature in response to bradykinin. Am J Physiol 283:H406–411

    CAS  Google Scholar 

  32. Ledenev AN, Konstantinov AA, Popova E, Ruuge EK (1986) A simple assay of the superoxide generation rate with Tiron as an EPR-visible radical scavenger. Biochem Int 13:391–396

    CAS  PubMed  Google Scholar 

  33. Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol 287:R1014–R1030

    CAS  Google Scholar 

  34. Liu S, Beckman JS, Ku DD (1994) Peroxynitrite, a product of superoxide and nitric oxide, produces coronary vasorelaxation in dogs. J Pharmacol Exp Ther 268:1114–1121

    CAS  PubMed  Google Scholar 

  35. Liu Y, Terata K, Chai Q, Li H, Kleinman LH, Gutterman DD (2002) Peroxynitrite inhibits Ca2+-activated K+ channel activity in smooth muscle of human coronary arterioles. Circ Res 91:1070–1076

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD (2003) Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res 93:573–580

    Article  CAS  PubMed  Google Scholar 

  37. Lucchesi PA, Belmadani S, Matrougui K (2005) Hydrogen peroxide acts as both vasodilator and vasoconstrictor in the control of perfused mesenteric arteries. J Hypertens 23:571–579

    Article  CAS  PubMed  Google Scholar 

  38. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530

    Article  CAS  PubMed  Google Scholar 

  39. Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujiki T, Kunihiro I, Mukai Y, Hirakawa Y, Takeshita A (2002) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. Biochem Biophys Res Commun 290:909–913

    Article  CAS  PubMed  Google Scholar 

  40. Matoba T, Shimokawa H, Morikawa K, Kubota H, Kunihiro I, Urakami-Harasawa L, Mukai Y, Hirakawa Y, Akaike T, Takeshita A (2003) Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler Thromb Vasc Biol 23:1224–1230

    Article  CAS  PubMed  Google Scholar 

  41. Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD (2003) Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res 92:e31–e40

    Article  CAS  PubMed  Google Scholar 

  42. Morikawa K, Shimokawa H, Matoba T, Kubota H, Akaike T, Talukder MA, Hatanaka M, Fujiki T, Maeda H, Takahashi S, Takeshita A (2003) Pivotal role of Cu, Zn-superoxide dismutase in endothelium-dependent hyperpolarization. J Clin Invest 112:1871–1879

    CAS  PubMed  Google Scholar 

  43. Morikawa K, Fujiki T, Matoba T, Kubota H, Hatanaka M, Takahashi S, Shimokawa H (2004) Important role of superoxide dismutase in EDHF-mediated responses of human mesenteric arteries. J Cardiovasc Pharmacol 44:552–556

    Article  CAS  PubMed  Google Scholar 

  44. Morishita T, Tsutsui M, Shimokawa H, Sabanai K, Tasaki H, Suda O, Nakata S, Tanimoto A, Wang K-Y, Ueta Y, Sasaguri Y, Nakashima Y, Yanagihara N (2005) Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms. Proc Nat'l Acad Sci USA 102:10616–10621

    Article  CAS  Google Scholar 

  45. Mugge A, Elwell JH, Peterson TE, Harrison DG (1991) Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. Am J Physiol 260:C219–C225

    CAS  PubMed  Google Scholar 

  46. Nagao T, Illiano S, Vanhoutte PM (1992) Calmodulin antagonists inhibit endothelium-dependent hyperpolarization in the canine coronary artery. Br J Pharmacol 107:382–386

    CAS  PubMed  Google Scholar 

  47. Nakata S, Tsutsui M, Shimokawa H, Morishita T, Sabanai K, Nagasaki M, Tanimoto A, Yatera Y, Tasaki H, Nakamura T, Sasaguri Y, Nakashima Y, Otsuji Y, Yanagihara N (2008) Spontaneous myocardial infarction in mice lacking all nitric oxide synthase isoforms. Circulation 117:2211–2223

    Article  CAS  PubMed  Google Scholar 

  48. Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276:38388–38393

    Article  CAS  PubMed  Google Scholar 

  49. Rubanyi GM, Vanhoutte PM (1986) Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Am J Physiol 250:H815–21

    CAS  PubMed  Google Scholar 

  50. Shimokawa H (2005) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J Mol Cell Cardiol 39:725–732

    Article  CAS  PubMed  Google Scholar 

  51. Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, Takeshita A (1996) The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28:703–711

    Article  CAS  PubMed  Google Scholar 

  52. Shimokawa H, Matoba T (2004) Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pharmacol Res 49:543–549

    Article  CAS  PubMed  Google Scholar 

  53. Sobey CG, Heistad DD, Faraci FM (1997) Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke 28:2290–2294

    CAS  PubMed  Google Scholar 

  54. Stuehr D, Pou S, Rosen GM (2001) Oxygen reduction by nitric-oxide synthases. J Biol Chem 276:14533–14536

    Article  CAS  PubMed  Google Scholar 

  55. Takaki A, Morikawa K, Tsutsui M, Murayama Y, Takes E, Yamagishi H, Ohashi J, Yada T, Yanagihara N, Shimokawa H (2008) Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice. J Exp Med 205:2053–2063

    Article  CAS  PubMed  Google Scholar 

  56. Takamura Y, Shimokawa H, Zhao H, Igarashi H, Egashira K, Takeshita A (1999) Important role of endothelium-derived hyperpolarizing factor in shear stress-induced endothelium-dependent relaxations in the rat mesenteric artery. J Cardiovasc Pharmacol 34:381–387

    Article  CAS  PubMed  Google Scholar 

  57. Takano H, Dora KA, Spitaler MM, Garland CJ (2004) Spreading dilatation in rat mesenteric arteries associated with calcium-independent endothelial cell hyperpolarization. J Physiol 556:887–903

    Article  CAS  PubMed  Google Scholar 

  58. Thengchaisri N, Kuo L (2003) Hydrogen peroxide induces endothelium-dependent and -independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol 285:H2255–H2263

    CAS  Google Scholar 

  59. Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A (1997) Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 100:2793–2799

    Article  CAS  PubMed  Google Scholar 

  60. Vanhoutte PM (2009) Endothelial dysfunction. The first step toward coronary arteriosclerosis. Circ J 73:595–601

    Article  CAS  PubMed  Google Scholar 

  61. Wei EP, Kontos HA, Beckman JS (1996) Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol 271:H1262–H1266

    CAS  PubMed  Google Scholar 

  62. Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, Kajiya F (2003) Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 107:1040–1045

    Article  CAS  PubMed  Google Scholar 

  63. Yada T, Shimokawa H, Hiramatsu O, Shinozaki Y, Mori H, Kiyooka T, Goto M, Ogasawara Y, Kajiya F (2006) Cardioprotective role of hydrogen peroxide during ischemia-reperfusion injury in canine coronary microcirculation in vivo. Am J Physiol 291:H1138–1146

    CAS  Google Scholar 

  64. Yada T, Shimokawa H, Hiramatsu O, Shinozaki Y, Mori H, Goto M, Ogasawara Y, Kajiya F (2007) Important role of hydrogen peroxide in pacing-induced metabolic coronary vasodilatation in dogs in vivo. J Am Coll Cardiol 50:1271–1278

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the following collaborators for their cooperation: Drs. A. Takaki and J. Ohashi at Tohoku University, Morikawa K, T. Matoba, and A. Takeshita at Kyushu University, Dr. M. Tsutsui at Ryukyu University, and Drs. T. Yada and F. Kajiya at Kawasaki University. The authors’ works were supported in part by the grants from the Japanese Ministry of Education, Science, Sports, and Culture, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Shimokawa.

Additional information

H2O2 as an EDHF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimokawa, H. Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pflugers Arch - Eur J Physiol 459, 915–922 (2010). https://doi.org/10.1007/s00424-010-0790-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0790-8

Keywords

Navigation