Skip to main content

Advertisement

Log in

Ca2+-dependent large conductance K+ currents in thalamocortical relay neurons of different rat strains

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Mutations in genes coding for Ca2+ channels were found in patients with childhood absence epilepsy (CAE) indicating a contribution of Ca2+-dependent mechanisms to the generation of spike-wave discharges (SWD) in humans. Since the involvement of Ca2+ signals remains unclear, the aim of the present study was to elucidate the function of a Ca2+-dependent K+ channel (BKCa) under physiological conditions and in the pathophysiological state of CAE. The activation of BKCa channels is dependent on both voltage and intracellular Ca2+ concentrations. Moreover, these channels exhibit an outstandingly high level of regulatory heterogeneity that builds the basis for the influence of BKCa channels on different aspects of neuronal activity. Here, we analyse the contribution of BKCa channels to firing of thalamocortical relay neurons, and we test the hypothesis that BKCa channel activity affects the phenotype of a genetic rat model of CAE. We found that the activation of the β2-adrenergic receptor/protein kinase A pathway resulted in BKCa channel inhibition. Furthermore, BKCa channels affect the number of action potentials fired in a burst and produced spike frequency adaptation during tonic activity. The latter result was confirmed by a computer modelling approach. We demonstrate that the β2-adrenergic inhibition of BKCa channels prevents spike frequency adaptation and, thus, might significantly support the tonic firing mode of thalamocortical relay neurons. In addition, we show that BKCa channel functioning differs in epileptic WAG/Rij and thereby likely contributes to highly synchronised, epileptic network activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Biella G, Meis S, Pape H-C (2001) Modulation of a Ca2+-dependent K+-current by intracellular cAMP in rat thalamocortical relay neurons. Thalamus Relat Syst 1:157–167

    Article  CAS  Google Scholar 

  2. Bista P, Meuth S, Kanyshkova T, Cerina M, Pawlowski M, Ehling P, Landgraf P, Borsotto M, Heurteaux C, Pape H-C, Baukrowitz T, Budde T (2012) Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons. Pflügers Archiv Eur J Physiol 463(1):89–102. doi:10.1007/s00424-011-1056-9

    Article  CAS  Google Scholar 

  3. Blumenfeld H, Klein J, Schridde U, Vestal M, Rice T, Khera D, Bashyal C, Giblin K, Paul-Laughinghouse C, Wang F, Phadke A, Mission J, Agarwal R, Englot D, Motelow J, Nersesyan H, Waxman S, Levin A (2008) Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia 49(3):400–409

    Article  PubMed  CAS  Google Scholar 

  4. Broicher T, Kanyshkova T, Landgraf P, Rankovic V, Meuth P, Meuth S, Pape H-C, Budde T (2007) Specific expression of low-voltage-activated calcium channel isoforms and splice variants in thalamic local circuit interneurons. Mol Cell Neurosci 36(2):132–145

    Article  PubMed  CAS  Google Scholar 

  5. Broicher T, Kanyshkova T, Meuth P, Pape H-C, Budde T (2008) Correlation of T-channel coding gene expression, IT, and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy. Mol Cell Neurosci 39(3):384–399. doi:10.1016/j.mcn.2008.07.012

    Article  PubMed  CAS  Google Scholar 

  6. Broicher T, Seidenbecher T, Meuth P, Munsch T, Meuth S, Kanyshkova T, Pape H-C, Budde T (2007) T-current related effects of antiepileptic drugs and a Ca2+ channel antagonist on thalamic relay and local circuit interneurons in a rat model of absence epilepsy. Neuropharmacology 53(3):431–446

    Article  PubMed  CAS  Google Scholar 

  7. Budde T, Biella G, Munsch T, Pape H (1997) Lack of regulation by intracellular Ca2+ of the hyperpolarization-activated cation current in rat thalamic neurones. J Physiol 503(Pt 1):79–85

    Article  PubMed  CAS  Google Scholar 

  8. Budde T, Caputi L, Kanyshkova T, Staak R, Abrahamczik C, Munsch T, Pape H-C (2005) Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy. J Neurosci Off J Soc Neurosci 25(43):9871–9882

    Article  CAS  Google Scholar 

  9. Budde T, Mager R, Pape H-C (1992) Different types of potassium outward current in relay neurons acutely isolated from the rat lateral geniculate nucleus. Eur J Neurosci 4(8):708–722

    Article  PubMed  Google Scholar 

  10. Budde T, Sieg F, Braunewell K, Gundelfinger E, Pape H (2000) Ca2+-induced Ca2+ release supports the relay mode of activity in thalamocortical cells. Neuron 26(2):483–492

    Article  PubMed  CAS  Google Scholar 

  11. Chen L, Tian L, MacDonald S, McClafferty H, Hammond M, Huibant J-M, Ruth P, Knaus H-G, Shipston M (2005) Functionally diverse complement of large conductance calcium- and voltage-activated potassium channel (BK) alpha-subunits generated from a single site of splicing. J Biol Chem 280(39):33599–33609

    Article  PubMed  CAS  Google Scholar 

  12. Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo W, Qiang B, Chan P, Shen Y, Wu X (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54(2):239–243

    Article  PubMed  CAS  Google Scholar 

  13. Coenen A, Van Luijtelaar E (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33(6):635–655

    Article  PubMed  CAS  Google Scholar 

  14. Coulon P, Budde T, Pape H-C (2012) The sleep relay—the role of the thalamus in central and decentral sleep regulation. Pflügers Archiv Eur J Physiol 463(1):53–71

    Article  CAS  Google Scholar 

  15. Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55(1):27–57

    Article  PubMed  CAS  Google Scholar 

  16. Depaulis A, van Luijtelaar G (2006) Genetic models of absence epilepsy in the rat. In: Pitkänen A, Schwrtzkroin P, Moshé S (eds) Models of seizures and epilepsy. Elsevier, San Diego

    Google Scholar 

  17. Destexhe A, Bal T, McCormick D, Sejnowski T (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76(3):2049–2070

    PubMed  CAS  Google Scholar 

  18. Eichhorn B, Dobrev D (2007) Vascular large conductance calcium-activated potassium channels: functional role and therapeutic potential. Naunyn Schmiedeberg's Arch Pharmacol 376(3):145–155

    Article  CAS  Google Scholar 

  19. Ghatta S, Nimmagadda D, Xu X, O'Rourke S (2006) Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 110(1):103–116

    Article  PubMed  CAS  Google Scholar 

  20. Gribkoff VK, Starrett JE, Dworetzky SI (2001) Maxi-K potassium channels: form, function, and modulation of a class of endogenous regulators of intracellular calcium. Neuroscientist 7(2):166–177

    Article  PubMed  CAS  Google Scholar 

  21. Gu N, Vervaeke K, Storm J (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580(Pt.3):859–882

    Article  PubMed  CAS  Google Scholar 

  22. Guyon A, Vergnes M, Leresche N (1993) Thalamic low threshold calcium current in a genetic model of absence epilepsy. NeuroReport 4(11):1231–1234

    Article  PubMed  CAS  Google Scholar 

  23. Hall S, Armstrong D (2000) Conditional and unconditional inhibition of calcium-activated potassium channels by reversible protein phosphorylation. J Biol Chem 275(6):3749–3754

    Article  PubMed  CAS  Google Scholar 

  24. Hines M, Carnevale N (1997) The NEURON simulation environment. Neural Comput 9(6):1179–1209

    Article  PubMed  CAS  Google Scholar 

  25. Houweling A, Sejnowski T (1997) MyFirstNeuron. Oxford University Press, New York

    Google Scholar 

  26. Huguenard J, Prince D (1991) Slow inactivation of a TEA-sensitive K current in acutely isolated rat thalamic relay neurons. J Neurophysiol 66(4):1316–1328

    PubMed  CAS  Google Scholar 

  27. Inoue M, Peeters B, van Luijtelaar E, Vossen J, Coenen A (1990) Spontaneous occurrence of spike-wave discharges in five inbred strains of rats. Physiol Behav 48(1):199–201

    Article  PubMed  CAS  Google Scholar 

  28. Kanyshkova T, Meuth P, Bista P, Liu Z, Ehling P, Caputi L, Doengi M, Chetkovich D, Pape H-C, Budde T (2012) Differential regulation of HCN channel isoform expression in thalamic neurons of epileptic and non-epileptic rat strains. Neurobiol Dis 45(1):450–461. doi:10.1016/j.nbd.2011.08.032

    Article  PubMed  CAS  Google Scholar 

  29. Khan R, Smith S, Morrison J, Ashford M (1993) Properties of large-conductance K+ channels in human myometrium during pregnancy and labour. Proc Biol Sci R Soc 251(1330):9–15

    Article  CAS  Google Scholar 

  30. Kuisle M, Wanaverbecq N, Brewster A, Frère S, Pinault D, Baram T, Lüthi A (2006) Functional stabilization of weakened thalamic pacemaker channel regulation in rat absence epilepsy. J Physiol 575(Pt 1):83–100

    Article  PubMed  CAS  Google Scholar 

  31. Leresche N, Parri H, Erdemli G, Guyon A, Turner J, Williams S, Asprodini E, Crunelli V (1998) On the action of the anti-absence drug ethosuximide in the rat and cat thalamus. J Neurosci: Off J Soc Neurosci 18(13):4842–4853

    CAS  Google Scholar 

  32. MacDonald S, Ruth P, Knaus H-G, Shipston M (2006) Increased large conductance calcium-activated potassium (BK) channel expression accompanied by STREX variant downregulation in the developing mouse CNS. BMC Dev Biol 6:37

    Article  PubMed  Google Scholar 

  33. Mahmoud S, McCobb D (2004) Regulation of Slo potassium channel alternative splicing in the pituitary by gonadal testosterone. J Neuroendocrinol 16(3):237–243

    Article  PubMed  CAS  Google Scholar 

  34. McCormick D (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39(4):337–388

    Article  PubMed  CAS  Google Scholar 

  35. McCormick D, Huguenard J (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68(4):1384–1400

    PubMed  CAS  Google Scholar 

  36. McCormick D, Pape H (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318

    PubMed  CAS  Google Scholar 

  37. McCrea K, Hill S (1993) Salmeterol, a long-acting beta 2-adrenoceptor agonist mediating cyclic AMP accumulation in a neuronal cell line. Br J Pharmacol 110(2):619–626

    Article  PubMed  CAS  Google Scholar 

  38. Meuth S, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape H-C (2003) Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosc Off J Soc Neurosci 23(16):6460–6469

    CAS  Google Scholar 

  39. Meuth S, Kanyshkova T, Meuth P, Landgraf P, Munsch T, Ludwig A, Hofmann F, Pape H-C, Budde T (2006) Membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. J Neurophysiol 96(3):1517–1529. doi:10.1152/jn.01212.2005

    Article  PubMed  CAS  Google Scholar 

  40. Meuth S, Pape H-C, Budde T (2002) Modulation of Ca2+ currents in rat thalamocortical relay neurons by activity and phosphorylation. Eur J Neurosci 15(10):1603–1614. doi:10.1046/j.1460-9568.2002.01999.x

    Article  PubMed  Google Scholar 

  41. Pape H (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    Article  PubMed  CAS  Google Scholar 

  42. Rankovic V, Landgraf P, Kanyshkova T, Ehling P, Meuth S, Kreutz M, Budde T, Munsch T (2011) Modulation of calcium-dependent inactivation of L-type Ca2+ channels via β-adrenergic signaling in thalamocortical relay neurons. PLoS One 6(12). doi:10.1371/journal.pone.0027474

  43. Rogawski M, Löscher W (2004) The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5(7):553–564

    Article  PubMed  CAS  Google Scholar 

  44. Sanchez M, McManus O (1996) Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel. Neuropharmacology 35(7):963–968

    Article  PubMed  CAS  Google Scholar 

  45. Saucerman J, McCulloch A (2006) Cardiac beta-adrenergic signaling: from subcellular microdomains to heart failure. Ann N Y Acad Sci 1080:348–361. doi:10.1196/annals.1380.026

    Article  PubMed  CAS  Google Scholar 

  46. Schridde U, Strauss U, Bräuer A, van Luijtelaar G (2006) Environmental manipulations early in development alter seizure activity, Ih and HCN1 protein expression later in life. Eur J Neurosci 23(12):3346–3358

    Article  PubMed  Google Scholar 

  47. Schubert R, Nelson M (2001) Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharmacol Sci 22(10):505–512

    Article  PubMed  CAS  Google Scholar 

  48. Shao L, Halvorsrud R, Borg-Graham L, Storm J (1999) The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 521(Pt 1):135–146

    Article  PubMed  CAS  Google Scholar 

  49. Sherman S, Guillery R (2006) Exploring the thalamus and its role in cortical function, 2nd edn. MIT, Cambridge

    Google Scholar 

  50. Shipston M, Armstrong D (1996) Activation of protein kinase C inhibits calcium-activated potassium channels in rat pituitary tumour cells. J Physiol 493(Pt 3):665–672

    PubMed  CAS  Google Scholar 

  51. Staak R, Pape H (2001) Contribution of GABA(A) and GABA(B) receptors to thalamic neuronal activity during spontaneous absence seizures in rats. J Neurosci Off J Soc Neurosci 21(4):1378–1384

    CAS  Google Scholar 

  52. Steriade M (1997) Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb Cortex (NY 1991) 7(6):583–604

    Article  CAS  Google Scholar 

  53. Steriade M, Llinás R (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68(3):649–742

    PubMed  CAS  Google Scholar 

  54. Tian L, Coghill L, McClafferty H, MacDonald S, Antoni F, Ruth P, Knaus H-G, Shipston M (2004) Distinct stoichiometry of BKCa channel tetramer phosphorylation specifies channel activation and inhibition by cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 101(32):11897–11902

    Article  PubMed  CAS  Google Scholar 

  55. Tian L, Duncan R, Hammond M, Coghill L, Wen H, Rusinova R, Clark A, Levitan I, Shipston M (2001) Alternative splicing switches potassium channel sensitivity to protein phosphorylation. J Biol Chem 276(11):7717–7720

    Article  PubMed  CAS  Google Scholar 

  56. Tóth T, Crunelli V (1997) Simulation of intermittent action potential firing in thalamocortical neurons. Neuroreport 8(13):2889–2892

    Article  PubMed  Google Scholar 

  57. Tseng-Crank J, Foster C, Krause J, Mertz R, Godinot N, DiChiara T, Reinhart P (1994) Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K+ channel isoforms from human brain. Neuron 13(6):1315–1330

    Article  PubMed  CAS  Google Scholar 

  58. Yan J, Olsen J, Park K-S, Li W, Bildl W, Schulte U, Aldrich R, Fakler B, Trimmer J (2008) Profiling the phospho-status of the BKCa channel alpha subunit in rat brain reveals unexpected patterns and complexity. Mol Cell Proteomics 7(11):2188–2198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Deutsche Forschungsgemeinschaft (DFG; BU 1019/11-1) and Interdisziplinäres Zentrum für Klinische Forschung (IZKF; Bud3/010/10; http://campus.uni-muenster.de/home.html). Thanks are due to E. Nass and K. Foraita for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Ehling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

ESM 2

(PDF 18 kb)

ESM 3

(PDF 20 kb)

ESM 4

(PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehling, P., Cerina, M., Meuth, P. et al. Ca2+-dependent large conductance K+ currents in thalamocortical relay neurons of different rat strains. Pflugers Arch - Eur J Physiol 465, 469–480 (2013). https://doi.org/10.1007/s00424-012-1188-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1188-6

Keywords

Navigation