Skip to main content

Advertisement

Log in

Acidic priming enhances metastatic potential of cancer cells

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Metabolic acidosis is a common feature of tumor microenvironment and may affect the phenotype of tumor cells, including invasive capacity and formation of metastases. We tested whether previous exposure to an acidic environment alters metastatic potential of two rat carcinoma cell lines in the animal model. In addition, we determined the effect of an acidic environment on motility and invasive capacity of AT-1 prostate carcinoma cells in culture. Exposure of tumor cells to an acidic environment (pH 6.6, 5 % CO2, 6 h) prior to tail vein injection in rats enhanced formation of lung metastases significantly. In culture, acidosis increased cellular motility of AT-1 cells. When the tumor cells were transferred back to pH 7.4, enhanced motility persisted for at least 3 h but vanished after longer periods (24 h), therefore presenting a “short-term memory effect.” Although acidosis augmented phosphorylation of ERK1/2 and p38, and inhibition of ERK1/2 phosphorylation or of p38 kinase activity reduced basal motility at pH 7.4, acidosis-induced increase in motility was not dependent on ERK1/2 or p38 kinase. Src family kinases were not involved either. By contrast, scavenging reactive oxygen species (ROS), known to be increased in AT-1 cells under acidic conditions, blunted acidosis-induced motility increase. Our data indicate that tumor cells may acquire enhanced motility in an acidic micromilieu, at least in part due to enhanced ROS formation. Because enhanced motility persists for at least 3 h after leaving the acidic environment, this may promote metastasis formation, as observed in our in vivo model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahn H, Kim JM, Lee K et al (2012) Extracellular acidosis accelerates bone resorption by enhancing osteoclast survival, adhesion, and migration. Biochem Biophys Res Commun 418:144–148. doi:10.1016/j.bbrc.2011.12.149

    Article  PubMed  CAS  Google Scholar 

  2. Bischoff DS, Zhu J-H, Makhijani NS, Yamaguchi DT (2008) Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways. J Cell Biochem 104:1378–1392. doi:10.1002/jcb.21714

    Article  PubMed  CAS  Google Scholar 

  3. Brackenbury WJ (2012) Voltage-gated sodium channels and metastatic disease. Channels (Austin) 6:352–361. doi:10.4161/chan.21910

    Article  CAS  Google Scholar 

  4. Brenninkmeijer L, Kuehl C, Geldart AM et al (2011) Heme oxygenase-1 does not mediate the effects of extracellular acidosis on vascular smooth muscle cell proliferation, migration, and susceptibility to apoptosis. J Vasc Res 48:285–296. doi:10.1159/000321555

    Article  PubMed  CAS  Google Scholar 

  5. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95. doi:10.1038/nrc2981

    Article  PubMed  CAS  Google Scholar 

  6. Castellone RD, Leffler NR, Dong L, Yang LV (2011) Inhibition of tumor cell migration and metastasis by the proton-sensing GPR4 receptor. Cancer Lett 312:197–208. doi:10.1016/j.canlet.2011.08.013

    Article  PubMed  CAS  Google Scholar 

  7. Chatzizacharias NA, Kouraklis GP, Giaginis CT, Theocharis SE (2012) Clinical significance of Src expression and activity in human neoplasia. Histol Histopathol 27:677–692

    PubMed  CAS  Google Scholar 

  8. Chen C-H, Lin H, Chuang S-M et al (2010) Acidic stress facilitates tyrosine phosphorylation of HLJ1 to associate with actin cytoskeleton in lung cancer cells. Exp Cell Res 316:2910–2921. doi:10.1016/j.yexcr.2010.06.027

    Article  PubMed  CAS  Google Scholar 

  9. Chen K-H, Tung P-Y, Wu J-C et al (2008) An acidic extracellular pH induces Src kinase-dependent loss of beta-catenin from the adherens junction. Cancer Lett 267:37–48. doi:10.1016/j.canlet.2008.03.005

    Article  PubMed  CAS  Google Scholar 

  10. Chiarugi P, Pani G, Giannoni E et al (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161:933–944. doi:10.1083/jcb.200211118

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Creedon H, Brunton VG (2012) Src kinase inhibitors: promising cancer therapeutics? Crit Rev Oncog 17:145–159

    Article  PubMed  Google Scholar 

  12. D’Arcangelo D, Facchiano F, Barlucchi LM et al (2000) Acidosis inhibits endothelial cell apoptosis and function and induces basic fibroblast growth factor and vascular endothelial growth factor expression. Circ Res 86:312–318

    Article  PubMed  Google Scholar 

  13. DalleDonne I, Milzani A, Colombo R (1999) The tert-butyl hydroperoxide-induced oxidation of actin Cys-374 is coupled with structural changes in distant regions of the protein. Biochemistry 38:12471–12480

    Article  PubMed  CAS  Google Scholar 

  14. DalleDonne I, Milzani A, Colombo R (1995) H2O2-treated actin: assembly and polymer interactions with cross-linking proteins. Biophys J 69:2710–2719. doi:10.1016/S0006-3495(95)80142-6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290. doi:10.1038/sj.onc.1210421

    Article  PubMed  CAS  Google Scholar 

  16. Dietl K, Renner K, Dettmer K et al (2010) Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol 184:1200–1209. doi:10.4049/jimmunol.0902584

    Article  PubMed  CAS  Google Scholar 

  17. Fidler IJ (2003) The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer 3:453–458. doi:10.1038/nrc1098

    Article  PubMed  CAS  Google Scholar 

  18. Fischer B, Müller B, Fischer KG et al (2000) Acidic pH inhibits non-MHC-restricted killer cell functions. Clin Immunol 96:252–263. doi:10.1006/clim.2000.4904

    Article  PubMed  CAS  Google Scholar 

  19. Fischer K, Hoffmann P, Voelkl S et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:3812–3819. doi:10.1182/blood-2006-07-035972

    Article  PubMed  CAS  Google Scholar 

  20. Gatenby RA, Gawlinski ET, Gmitro AF et al (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66:5216–5223. doi:10.1158/0008-5472.CAN-05-4193

    Article  PubMed  CAS  Google Scholar 

  21. Gekle M, Golenhofen N, Oberleithner H, Silbernagl S (1996) Rapid activation of Na+/H+ exchange by aldosterone in renal epithelial cells requires Ca2+ and stimulation of a plasma membrane proton conductance. Proc Natl Acad Sci U S A 93:10500–10504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Gekle M, Serrano OK, Drumm K et al (2002) NHE3 serves as a molecular tool for cAMP-mediated regulation of receptor-mediated endocytosis. Am J Physiol Renal Physiol 283:F549–F558. doi:10.1152/ajprenal.00206.2001

    PubMed  CAS  Google Scholar 

  23. Gekle M, Wünsch S, Oberleithner H, Silbernagl S (1994) Characterization of two MDCK-cell subtypes as a model system to study principal cell and intercalated cell properties. Pflugers Arch 157–162

  24. Giusti I, D’Ascenzo S, Millimaggi D et al (2008) Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles. Neoplasia 10:481–488

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Hashim AI, Zhang X, Wojtkowiak JW et al (2011) Imaging pH and metastasis. NMR Biomed 24:582–591. doi:10.1002/nbm.1644

    PubMed  PubMed Central  Google Scholar 

  26. Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117:4619–4628. doi:10.1242/jcs.01481

    Article  PubMed  CAS  Google Scholar 

  27. Kato Y, Lambert CA, Colige AC et al (2005) Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling. J Biol Chem 280:10938–10944. doi:10.1074/jbc.M411313200

    Article  PubMed  CAS  Google Scholar 

  28. Kato Y, Ozawa S, Tsukuda M et al (2007) Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma. FEBS J 274:3171–3183. doi:10.1111/j.1742-4658.2007.05848.x

    Article  PubMed  CAS  Google Scholar 

  29. Kim J-M, Min S-K, Kim H et al (2007) Vacuolar-type H+-ATPase-mediated acidosis promotes in vitro osteoclastogenesis via modulation of cell migration. Int J Mol Med 19:393–400

    PubMed  Google Scholar 

  30. Lee DJ, Kang SW (2013) Reactive oxygen species and tumor metastasis. Mol Cells 35:93–98. doi:10.1007/s10059-013-0034-9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Ludwig T, Riethmüller C, Gekle M et al (2004) Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int 66:196–202. doi:10.1111/j.1523-1755.2004.00720.x

    Article  PubMed  CAS  Google Scholar 

  32. Martin C, Pedersen SF, Schwab A, Stock C (2011) Intracellular pH gradients in migrating cells. Am J Physiol Cell Physiol 300:C490–C495. doi:10.1152/ajpcell.00280.2010

    Article  PubMed  CAS  Google Scholar 

  33. Martínez-Zaguilán R, Seftor EA, Seftor RE et al (1996) Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14:176–186

    Article  PubMed  Google Scholar 

  34. McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochem Biophys Acta 1773:1263–1284. doi:10.1016/j.bbamcr.2006.10.001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Moellering RE, Black KC, Krishnamurty C et al (2008) Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25:411–425. doi:10.1007/s10585-008-9145-7

    Article  PubMed  CAS  Google Scholar 

  36. Monteith GR, Davis FM, Roberts-Thomson SJ (2012) Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 287:31666–31673. doi:10.1074/jbc.R112.343061

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Mori K, Shibanuma M, Nose K (2004) Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res 64:7464–7472. doi:10.1158/0008-5472.CAN-04-1725

    Article  PubMed  CAS  Google Scholar 

  38. Payne SL, Fogelgren B, Hess AR et al (2005) Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res 65:11429–11436. doi:10.1158/0008-5472.CAN-05-1274

    Article  PubMed  CAS  Google Scholar 

  39. Rao RK, Basuroy S, Rao VU et al (2002) Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J 368:471–481. doi:10.1042/BJ20011804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Riemann A, Schneider B, Ihling A et al (2011) Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS One 6:e22445. doi:10.1371/journal.pone.0022445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Robey IF, Baggett BK, Kirkpatrick ND et al (2009) Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 69:2260–2268. doi:10.1158/0008-5472.CAN-07-5575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Rofstad EK, Mathiesen B, Kindem K, Galappathi K (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699–6707. doi:10.1158/0008-5472.CAN-06-0983

    Article  PubMed  CAS  Google Scholar 

  43. Schlappack OK, Zimmermann A, Hill RP (1991) Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. Br J Cancer 64:663–670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Schulze A, Harris AL (2012) How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491:364–373. doi:10.1038/nature11706

    Article  PubMed  CAS  Google Scholar 

  45. Schwab A, Fabian A, Hanley PJ, Stock C (2012) Role of ion channels and transporters in cell migration. Physiol Rev 92:1865–1913. doi:10.1152/physrev.00018.2011

    Article  PubMed  CAS  Google Scholar 

  46. Schwab A, Rossmann H, Klein M et al (2005) Functional role of Na+−HCO3 cotransport in migration of transformed renal epithelial cells. J Physiol 568:445–458. doi:10.1113/jphysiol.2005.092957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Stock C, Gassner B, Hauck CR et al (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 567:225–238. doi:10.1113/jphysiol.2005.088344

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Stock C, Schwab A (2009) Protons make tumor cells move like clockwork. Pflugers Arch 458:981–992. doi:10.1007/s00424-009-0677-8

    Article  PubMed  CAS  Google Scholar 

  49. Thews O, Gassner B, Kelleher DK et al (2006) Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia 8:143–152. doi:10.1593/neo.05697

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Thews O, Lambert C, Kelleher DK et al (2009) Impact of reactive oxygen species on the expression of adhesion molecules in vivo. Adv Exp Med Biol 645:95–100. doi:10.1007/978-0-387-85998-9_15

    Article  PubMed  CAS  Google Scholar 

  51. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218

    Article  PubMed  CAS  Google Scholar 

  52. Tobar N, Guerrero J, Smith PC, Martínez J (2010) NOX4-dependent ROS production by stromal mammary cells modulates epithelial MCF-7 cell migration. Br J Cancer 103:1040–1047. doi:10.1038/sj.bjc.6605847

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Tochhawng L, Deng S, Pervaiz S, Yap CT (2013) Redox regulation of cancer cell migration and invasion. Mitochondrion 13:246–253. doi:10.1016/j.mito.2012.08.002

    Article  PubMed  CAS  Google Scholar 

  54. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  55. Voura EB, Ramjeesingh RA, Montgomery AM, Siu CH (2001) Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell 12:2699–2710

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Weiner ID, Hamm LL (1989) Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule. Am J Physiol 256:F957–F964

    PubMed  CAS  Google Scholar 

  57. Workman P, Aboagye EO, Balkwill F et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577. doi:10.1038/sj.bjc.6605642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Wu W-S, Wu J-R, Hu C-T (2008) Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev 27:303–314. doi:10.1007/s10555-008-9112-4

    Article  PubMed  CAS  Google Scholar 

  59. Zhao X, Guan J-L (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63:610–615. doi:10.1016/j.addr.2010.11.001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Krebshilfe (Grants 106774/106906), the BMBF (ProNet-T3 Ta-04), and the Wilhelm-Roux program of the Medical School, Universität Halle-Wittenberg.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Riemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riemann, A., Schneider, B., Gündel, D. et al. Acidic priming enhances metastatic potential of cancer cells. Pflugers Arch - Eur J Physiol 466, 2127–2138 (2014). https://doi.org/10.1007/s00424-014-1458-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1458-6

Keywords

Navigation