Skip to main content

Advertisement

Log in

Changes in the loading conditions induced by vagal stimulation modify the myocardial infarct size through sympathetic-parasympathetic interactions

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In a previous research, we described that vagal stimulation increases the infarct size by sympathetic co-activation. The aim of this study was to determine if hemodynamic changes secondary to the vagal stimulation are able to activate sympathetic compensatory neural reflexes, responsible for increasing the infarct size. A second goal was to determine if intermittent vagal stimulation avoids sympathetic activation and reduces infarct size by muscarinic activation of the Akt/glycogen synthase kinase 3 β (GSK-3β) pathway. Rabbits were subjected to 30 min of regional myocardial ischemia and 3 h of reperfusion without vagal stimulation, or the following protocols of right vagus nerve stimulation for 10 min before ischemia: (a) continuous vagal stimulation and (b) intermittent vagal stimulation (cycles of 10 s ON/50 s OFF). Continuous vagal stimulation increased the infarct size (70.7 ± 4.3 %), even after right vagal section (68.6 ± 4.1 %) compared with control group (52.0 ± 3.7 %, p < 0.05). Bilateral vagotomy, pacing, and esmolol abolished the deleterious effect, reaching an infarct size of 43.3 ± 5.1, 43.5 ± 2.1, and 46.0 ± 4.6 % (p < 0.05), respectively. Intermittent stimulation reduced the infarct size to 29.8 ± 3.0 % (p < 0.05 vs I/R). This effect was blocked with atropine (50.2 ± 3.6 %, p < 0.05). Continuous vagal stimulation induced bradycardia and increased the loading conditions and wall stretching of the atria. These changes provoked the co-activation reflex of the sympathetic nervous system, observed by the rise in plasmatic catecholamine levels, which increased the infarct size. Sympathetic co-activation was abolished by continuous vagal stimulation with constant heart rate or parasympathetic deafferentation. Intermittent vagal stimulation attenuated the sympathetic tone and reduced the infarct size by the muscarinic activation of the Akt pathway and GSK-3β inhibition. Continuous stimulation only phosphorylated Akt and GSK-3β when esmolol was administered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buchholz B, Donato M, Perez V, Ivalde FC, Hocht C, Buitrago E, Rodriguez M, Gelpi RJ (2012) Preischemic efferent vagal stimulation increases the size of myocardial infarction in rabbits. Role of the sympathetic nervous system. Int J Cardiol 3:490–491. doi:10.1016/j.ijcard.2011.12.082, PMID: 22257691

    Article  Google Scholar 

  2. Buchholz BD, Annunzio V, Giani JF, Siachoque N, Dominici FP, Turyn D, Perez V, Donato M, Gelpi RJ (2014) Ischemic postconditioning reduces infarct size through the α1-adrenergic receptor pathway. J Cardiovasc Pharmacol 63(6):504–11. doi:10.1097/FJC.0000000000000074, PMID: 24406486

    Article  CAS  PubMed  Google Scholar 

  3. Calvillo L, Vanoli E, Andreoli E, Besana A, Omodeo E, Gnecchi M, Zerbi P, Vago G, Busca G, Schwartz PJ (2011) Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. J Cardiovasc Pharmacol 5:500–507. doi:10.1097/FJC.0b013e31822b7204, PMID: 21765369

    Article  Google Scholar 

  4. Cerati D, Schwartz PJ (1991) Single cardiac vagal fiber activity, acute myocardial ischemia, and risk for sudden death. Circ Res 5:1389–1401, PMID: 1934362

    Article  Google Scholar 

  5. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 13:819–823, PMID: 6382011

    Article  Google Scholar 

  6. Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 13:1329–1334, PMID: 9751683

    Article  Google Scholar 

  7. Costandi PN, Frank LR, McCulloch AD, Omens JH (2006) Role of diastolic properties in the transition to failure in a mouse model of the cardiac dilatation. Am J Physiol Heart Circ Physiol 6:H2971–H2979, PMID: 16861693

    Article  Google Scholar 

  8. Donato M, Buchholz B, Rodriguez M, Perez V, Inserte J, Garcia-Dorado D, Gelpi RJ (2013) Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol 2:425–434. doi:10.1113/expphysiol.2012.066217, PMID: 22872660

    Article  Google Scholar 

  9. Iliodromitis EK, Tasouli A, Andreadou I, Bofilis E, Zoga A, Cokkinos P, Kremastinos DT (2004) Intravenous atenolol and esmolol maintain the protective effect of ischemic preconditioning in vivo. Eur J Pharmacol 499(1–2):163–9, PMID: 15363963

    Article  CAS  PubMed  Google Scholar 

  10. Imai Y, Ito S, Maruta K, Fujita K (1988) Simultaneous determination of catecholamines and serotonin by liquid chromatography, after treatment with boric acid gel. Clin Chem 3:528–530, PMID: 3349603

    Google Scholar 

  11. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 20:2007–2018

    Article  Google Scholar 

  12. Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res 104(11):1240–52. doi:10.1161/CIRCRESAHA.109.197996, PMID: 19498210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T (2009) Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg 1:223–231. doi:10.1016/j.jtcvs.2008.08.020, PMID: 19154929

    Article  Google Scholar 

  14. Katare RG, Ando M, Kakinuma Y, Arikawa M, Yamasaki F, Sato T (2010) Differential regulation of TNF receptors by vagal nerve stimulation protects heart against acute ischemic injury. J Mol Cell Cardiol 2:234–244. doi:10.1016/j.yjmcc.2010.03.007, PMID: 20302876

    Article  Google Scholar 

  15. Kawada T, Akiyama T, Shimizu S, Kamiya A, Uemura K, Li M, Shirai M, Sugimachi M (2009) Detection of endogenous acetylcholine release during brief ischemia in the rabbit ventricle: a possible trigger for ischemic preconditioning. Life Sci 15–16:597–601. doi:10.1016/j.lfs.2009.08.015, PMID: 19733187

    Article  Google Scholar 

  16. Koizumi K, Nishino H, Brooks CM (1977) Centers involved in the autonomic reflex reactions originating from stretching of the atria. Proc Natl Acad Sci U S A 5:2177–2181, PMID: 266737

    Article  Google Scholar 

  17. Krieg T, Qin Q, McIntosh EC, Cohen MV, Downey JM (2002) ACh and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases. Am J Physiol Heart Circ Physiol 283(6):H2322–30, PMID: 12388234

  18. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 1:120–124, PMID: 14662714

    Google Scholar 

  19. Linden RJ, Mary DA, Weatherill D (1982) The nature of the atrial receptors responsible for a reflex increase in activity in efferent cardiac sympathetic nerves. Q J Exp Physiol 1:143–149, PMID: 6281844

    Article  Google Scholar 

  20. Longhurst JC (1984) Cardiac receptors: their function in health and disease. Prog Cardiovasc Dis 3:201–222, PMID: 6387803

    Article  Google Scholar 

  21. Mastitskaya S, Marina N, Gourine A, Gilbey MP, Spyer KM, Teschemacher AG, Kasparov S, Trapp S, Ackland GL, Gourine AV (2012) Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res 4:487–494. doi:10.1093/cvr/cvs212, PMID: 22739118

    Article  Google Scholar 

  22. McLean BA, Kienesberger PC, Wang W, Masson G, Zhabyeyev P, Dyck JR, Oudit GY (2013) Enhanced recovery from ischemia-reperfusion injury in PI3Kα dominant negative hearts: investigating the role of alternate PI3K isoforms, increased glucose oxidation and MAPK signaling. J Mol Cell Cardiol 54:9–18. doi:10.1016/j.yjmcc.2012.10.015, PMID: 23142539

    Article  CAS  PubMed  Google Scholar 

  23. Mioni C, Bazzani C, Giuliani D, Altavilla D, Leone S, Ferrari A, Minutoli L, Bitto A, Marini H, Zaffe D, Botticelli AR, Iannone A, Tomasi A, Bigiani A, Bertolini A, Squadrito F, Guarini S (2005) Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Crit Care Med 11:2621–2628, PMID: 16276189

    Article  Google Scholar 

  24. Olea FD, De Lorenzi A, Cortes C, Cuniberti L, Fazzi L, Mdel Flamenco P, Locatelli P, Cabeza Meckert P, Bercovich A, Laguens R, Crottogini A (2013) Combined VEGF gene transfer and erythropoietin in ovine reperfused myocardial infarction. Int J Cardiol 2:291–298. doi:10.1016/j.ijcard.2011.08.078, PMID: 21944383

    Article  Google Scholar 

  25. Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 1:159–227, PMID: 4568412

    Google Scholar 

  26. Qin Q, Downey JM, Cohen MV (2003) Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase. Am J Physiol Heart Circ Physiol 284(2):H727–34, PMID: 12388236

    Article  PubMed  Google Scholar 

  27. Recordati G, Lombardi F, Bishop VS, Malliani A (1975) Response of type B atrial vagal receptors to changes in wall tension during atrial filling. Circ Res 6:682–691, PMID: 1132063

    Article  Google Scholar 

  28. Recordati G, Lombardi F, Bishop VS, Malliani A (1976) Mechanical stimuli exciting type A atrial vagal receptors in the cat. Circ Res 5:397–403, PMID: 1269079

    Article  Google Scholar 

  29. Schaller B, Cornelius JF, Sandu N, Ottaviani G, Perez-Pinzon MA (2009)Oxygen-conserving reflexes of the brain: the current molecular knowledge. J Cell Mol Med 4:644–647. doi:10.1111/j.1582-4934.2009.00659.x, PMID: 19438971

    Article  Google Scholar 

  30. Schwartz PJ, La Rovere MT, Vanoli E (1992) Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation 1(Suppl):I77–I91, PMID: 1728509

    Google Scholar 

  31. Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, Revera M, Ajmone-Marsan N, Tavazzi L, Odero A (2008) Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 9:884–891. doi:10.1016/j.ejheart.2008.07.016, PMID: 18760668

    Article  Google Scholar 

  32. Terashima Y, Sato T, Yano T, Maas O, Itoh T, Miki T, Tanno M, Kuno A, Shimamoto K, Miura T (2010) Roles of phospho-GSK-3β in myocardial protection afforded by activation of the mitochondrial K ATP channel. J Mol Cell Cardiol 49:762–70. doi:10.1016/j.yjmcc.2010.08.001, PMID: 20692265

    Article  CAS  PubMed  Google Scholar 

  33. Tong H, Imahashi K, Steenbergen C, Murphy E (2002) Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res 90:377–379, PMID: 11884365

    Article  CAS  PubMed  Google Scholar 

  34. Tsutsumi T, Ide T, Yamato M, Kudou W, Andou M, Hirooka Y, Utsumi H, Tsutsui H, Sunagawa K (2008) Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction. Cardiovasc Res 4:713–721, PMID: 18065771

    Google Scholar 

  35. Uemura K, Li M, Tsutsumi T, Yamazaki T, Kawada T, Kamiya A, Inagaki M, Sunagawa K, Sugimachi M (2007) Efferent vagal nerve stimulation induces tissue inhibitor of metalloproteinase-1 in myocardial ischemia-reperfusion injury in rabbit. Am J Physiol Heart Circ Physiol 4:H2254–H2261, PMID: 17693545

    Article  Google Scholar 

  36. Uemura K, Zheng C, Li M, Kawada T, Sugimachi M (2010) Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction. J Card Fail 8:689–699. doi:10.1016/j.cardfail.2010.03.001, PMID: 20670848

    Article  Google Scholar 

  37. Wahab NS, Zucker IH, Gilmore JP (1975) Lack of a direct effect of efferent cardiac vagal nerve activity on atrial receptor activity. Am J Physiol 2:314–317, PMID: 1163659

    Google Scholar 

  38. Zhai P, Sciarretta S, Galeotti J, Volpe M, Sadoshima J (2011) Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion. Circ Res 109:502–511. doi:10.1161/CIRCRESAHA.111.249532, PMID: 21737790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zhan DY, Du CK, Akiyama T, Sonobe T, Tsuchimochi H, Shimizu S, Kawada T, Shirai M (2013) In vivo monitoring of acetylcholine release from cardiac vagal nerve endings in anesthetized mice. Auton Neurosci 1–2:91–94. doi:10.1016/j.autneu.2013.02.014, PMID: 23499513

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from National Agency for Scientific and Technological Promotion (ANPCyT, PICT 01071), the University of Buenos Aires (UBACyT M032), the National Council of Scientific and Technological Research (CONICET) (PIP0197/2011), and the Argentine Society of Cardiology.

Ethical standards

The procedures used in this study were approved by the Animal Care and Research Committee of the University of Buenos Aires (Protocol # 2004/11) and were in compliance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH publication, Eight edition; 2010).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Gelpi.

Additional information

Bruno Buchholz and Martín Donato contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchholz, B., Donato, M., Perez, V. et al. Changes in the loading conditions induced by vagal stimulation modify the myocardial infarct size through sympathetic-parasympathetic interactions. Pflugers Arch - Eur J Physiol 467, 1509–1522 (2015). https://doi.org/10.1007/s00424-014-1591-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1591-2

Keywords

Navigation