Skip to main content

Advertisement

Log in

( −)-Epicatechin and cardiometabolic risk factors: a focus on potential mechanisms of action

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

This review summarizes experimental evidence on the beneficial effects of ( −)-epicatechin (EC) attenuating major cardiometabolic risk factors, i.e., dyslipidemias, obesity (adipose tissue dysfunction), hyperglycemia (insulin resistance), and hypertension (endothelial dysfunction). Studies in humans are revised and complemented with experiments in animal models, and cultured cells, aiming to understand the molecular mechanisms involved in EC-mediated effects. Firstly, an assessment of EC metabolism gives relevance to both conjugated-EC metabolites product of host metabolism and microbiota-derived species. Integration and analysis of results stress the maintenance of redox homeostasis and mitigation of inflammation as relevant processes associated with cardiometabolic diseases. In these processes, EC appears having significant effects regulating NADPH oxidase (NOX)–dependent oxidant production, nitric oxide (NO) production, and energy homeostasis (mitochondrial biogenesis and function). The potential participation of cell membranes and membrane-bound receptors is also discussed in terms of direct molecular action of EC and EC metabolites reaching cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

ACC:

Acetyl-CoA carboxylase

ADME:

Absorption digestion metabolism and excretion

AKT:

Protein kinase B

AMP:

Adenosine monophosphate

AMPK:

5′-AMP-activated protein kinase

Apo:

Apolipoprotein

BCAEC:

Bovine coronary artery endothelial cells

BP:

Blood pressure

CaM:

Calmodulin

CaMKII:

CaM-dependent protein kinase II

C/EBPα:

CCAAT/enhancer-binding protein alpha

CCL:

Chemokine (C–C motif) ligand

CRP:

C-reactive protein

DOCA:

Deoxycorticosterone acetate

EC:

( −)-Epicatechin

eNOS:

Endothelial NOS

ERK:

Extracellular signal–regulated protein kinase

ET1:

Endothelin 1

FAS:

Fatty acid synthase

FMD:

Flow-mediated dilation

GLP1:

Glucagon-like peptide 1

GLUT2:

Glucose transporter 2

gp91 phox:

Glycoprotein 91 phagocytic oxidase (NOX2 catalytic subunit)

GPER:

G protein–coupled estrogen receptor

GSH:

Glutathione

HCAEC:

Human coronary artery endothelial cells

HDL:

High-density lipoprotein

HF:

High-fat

HFD:

HF diet

HOMA:

Homeostatic model assessment

HUVEC:

Human umbilical vein endothelial cells

ICAM:

Intercellular adhesion molecule

IKK:

IκB kinase

IL:

Interleukin

iNOS:

Inducible NOS

IR:

Insulin resistance

IRS1:

Insulin receptor substrate 1

IκBα:

NFκB inhibitor alpha

JNK:

C-Jun N-terminal kinases

LDL:

Low-density lipoprotein

L-NAME:

L-nitro-arginine methyl ester

MCP1:

Monocyte chemoattractant protein 1

NFκB:

Nuclear factor of kappa light polypeptide gene enhancer in B cells

nNOS:

Neuronal NOS

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX:

NADPH-oxidase

Nrf:

Nuclear factor erythroid related factor

p22phox:

Protein 22 phagocytic oxidase

p47phox:

Protein 47 phagocytic oxidase

PDK1:

Protein 3-phosphoinositide-dependent protein kinase 1

PGC1α:

Peroxisome proliferator-activated receptor γ coactivator 1 alpha

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase

PPAR:

Peroxisome proliferator-activated receptor

PTP1B:

Protein-tyrosine phosphatase 1B

RFM:

Ring fission metabolite

SGLT:

Sodium-glucose co-transporter

SREBP:

Sterol regulatory element binding proteins

SREM:

Structurally related EC metabolite

Tfam:

Mitochondrial transcription factor A

TG:

Triglycerides

TNFα:

Tumor necrosis factor alpha

TRPV3:

Transient receptor potential vanilloid channel 3

UCP:

Uncoupling protein

VCAM:

Vascular cell adhesion molecule

WAT:

White adipose tissue

References

  1. Andersson C, Lyass A, Vasan RS, Massaro JM, D’Agostino RB, Robins SJ (2014) Long-term risk of cardiovascular events across a spectrum of adverse major plasma lipid combinations in the Framingham Heart Study. Am Heart J 168(6):878-883.e1. https://doi.org/10.1016/j.ahj.2014.08.007

    Article  PubMed  CAS  Google Scholar 

  2. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, Michos ED, Miedema MD, Muñoz D, Smith SC, Virani SS, Williams KA, Yeboah J, Ziaeian B (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease. J Am Coll Cardiol 74(10):e177-232. https://doi.org/10.1016/j.jacc.2019.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barnett CF, Moreno-Ulloa A, Shiva S, Ramirez-Sanchez I, Taub PR, Su Y, Ceballos G, Dugar S, Schreiner G, Villarreal F (2015) Pharmacokinetic, partial pharmacodynamic and initial safety analysis of (-)-epicatechin in healthy volunteers. Food Funct 6(3):824–833. https://doi.org/10.1039/c4fo00596a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bentsáth A, Szent-Györgyi A (1937) Vitamin P. Nature 140:426. https://doi.org/10.1038/140426b0

    Article  Google Scholar 

  5. Beretz A, Anton R, Stoclet JC (1978) Flavonoid compounds are potent inhibitors of cyclic AMP phosphodiesterase. Experientia 34(8):1054–1055. https://doi.org/10.1007/BF01915343

    Article  PubMed  CAS  Google Scholar 

  6. Bernatova I, Liskova S (2021) Mechanisms modified by (−)-epicatechin and taxifolin relevant for the treatment of hypertension and viral infection: knowledge from preclinical studies. Antioxidants 10(3):467. https://doi.org/10.3390/antiox10030467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bettaieb A, Vazquez Prieto MA, Rodriguez Lanzi C, Miatello RM, Haj FG, Fraga CG, Oteiza PI (2014) (-)-Epicatechin mitigates high-fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress. Free Radic Biol Med 72:247–256. https://doi.org/10.1016/j.freeradbiomed.2014.04.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bettaieb A, Cremonini E, Kang H, Kang J, Haj FG, Oteiza PI (2016) Anti-inflammatory actions of (-)-epicatechin in the adipose tissue of obese mice. Int J Biochem Cell Biol 81(Pt B):383–392. https://doi.org/10.1016/j.biocel.2016.08.044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bondonno NP, Murray K, Cassidy A, Bondonno CP, Lewis JR, Croft KD, Kirø C, Gislason G, Torp-Pedersen C, Scalbert A, Tjønneland A, Hodgson JM, Dalgaard F (2020) Higher habitual flavonoid intakes are associated with a lower risk of peripheral artery disease hospitalizations. Am J Clin Nutr 113(1):187–199. https://doi.org/10.1093/jn/nxab269

    Article  PubMed Central  Google Scholar 

  10. Bondonno NP, Lewis JR, Blekkenhorst LC, Bondonno CP, Shin JHC, Croft KD, Woodman RJ, Wong G, Lim WH, Gopinath B, Flood VM, Russell J, Mitchell P, Hodgson JM (2020) Association of flavonoids and flavonoid-rich foods with all-cause mortality: the Blue Mountains Eye Study. Clin Nutr 39(1):141–150. https://doi.org/10.1016/j.clnu.2019.01.004

    Article  PubMed  CAS  Google Scholar 

  11. Borges G, van der Hooft JJJ, Crozier A (2016) A comprehensive evaluation of the [2- 14 C](–)-epicatechin metabolome in rats. Free Radic Biol Med 99:128–138. https://doi.org/10.1016/j.freeradbiomed.2016.08.001

    Article  PubMed  CAS  Google Scholar 

  12. Borges G, Ottaviani JI, van der Hooft JJJ, Schroeter H, Crozier A (2018) Absorption, metabolism, distribution and excretion of (-)-epicatechin: a review of recent findings. Mol Aspects Med 61:18–30. https://doi.org/10.1016/j.mam.2017.11.002

    Article  PubMed  CAS  Google Scholar 

  13. Brossette T, Hundsdörfer C, Kröncke K-D, Sies H, Stahl W (2011) Direct evidence that (-)-epicatechin increases nitric oxide levels in human endothelial cells. Eur J Nutr 50(7):595–599. https://doi.org/10.1007/s00394-011-0172-9

    Article  PubMed  CAS  Google Scholar 

  14. Cheng H, Xu N, Zhao W, Su J, Liang M, Xie Z, Wu X, Li Q (2017) (-)-Epicatechin regulates blood lipids and attenuates hepatic steatosis in rats fed high-fat diet. Mol Nutr Food Res 61(11). https://doi.org/10.1002/mnfr.201700303

  15. Cheung SY, Huang Y, Kwan HY, Chung HY, Yao X (2015) Activation of transient receptor potential vanilloid 3 channel suppresses adipogenesis. Endocrinology 156(6):2074–2086. https://doi.org/10.1210/en.2014-1831

    Article  PubMed  CAS  Google Scholar 

  16. Cordero-Herrera I, Martín MA, Bravo L, Goya L, Ramos S (2013) Cocoa flavonoids improve insulin signalling and modulate glucose production via AKT and AMPK in HepG2 cells. Mol Nutr Food Res 57(6):974–985. https://doi.org/10.1002/mnfr.201200500

    Article  PubMed  CAS  Google Scholar 

  17. Cremonini E, Bettaieb A, Haj FG, Fraga CG, Oteiza PI (2016) (-)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Arch Biochem Biophys 599:13–21. https://doi.org/10.1016/j.abb.2016.03.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cremonini E, Wang Z, Bettaieb A, Adamo AM, Daveri E, Mills DA, Kalanetra KM, Haj FG, Karakas S, Oteiza PI (2018) (-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance. Redox Biol 14:588–599. https://doi.org/10.1016/j.redox.2017.11.002

    Article  PubMed  CAS  Google Scholar 

  19. Cremonini E, Fraga CG, Oteiza PI (2019) (-)-Epicatechin in the control of glucose homeostasis: Involvement of redox-regulated mechanisms. Free Radic Biol Med 130:478–488. https://doi.org/10.1016/j.freeradbiomed.2018.11.010

    Article  PubMed  CAS  Google Scholar 

  20. Cremonini E, Iglesias DE, Kang J, Lombardo GE, Mostofinejad Z, Wang Z, Zhu W, Oteiza PI (2020) (-)-Epicatechin and the comorbidities of obesity. Arch Biochem Biophys 690:108505. https://doi.org/10.1016/j.abb.2020.108505

    Article  PubMed  CAS  Google Scholar 

  21. Cremonini E, Daveri E, Mastaloudis A, Oteiza PI (2021) (-)-Epicatechin and anthocyanins modulate GLP-1 metabolism: evidence from C57BL/6J Mice and GLUTag Cells. J Nutr. https://doi.org/10.1093/jn/nxab029

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12(11):722–734. https://doi.org/10.1038/nrm3198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Daussin FN, Heyman E, Burelle Y (2021) Effects of (-)-epicatechin on mitochondria. Nutr Rev 79(1):25–41. https://doi.org/10.1093/nutrit/nuaa094

    Article  PubMed  Google Scholar 

  24. De Los Santos S, Reyes-Castro LA, Coral-Vázquez RM, Méndez JP, Leal-García M, Zambrano E, Canto P (2020) (-)-Epicatechin reduces adiposity in male offspring of obese rats. J Dev Orig Health Dis 11(1):37–43. https://doi.org/10.1017/S2040174419000345

  25. Dower JI, Geleijnse JM, Gijsbers L, Zock PL, Kromhout D, Hollman PCH (2015) Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: a randomized, double-blind, placebo-controlled, crossover trial. Am J Clin Nutr 101(5):914–921. https://doi.org/10.3945/ajcn.114.098590

    Article  PubMed  CAS  Google Scholar 

  26. Dower JI, Geleijnse JM, Gijsbers L, Schalkwijk C, Kromhout D, Hollman PC (2015) Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: a randomized double-blind, placebo-controlled, crossover trial. J Nutr 145(7):1459–1463. https://doi.org/10.3945/jn.115.211888

    Article  PubMed  CAS  Google Scholar 

  27. Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol JASN 15(8):1983–1992. https://doi.org/10.1097/01.ASN.0000132474.50966.DA

    Article  PubMed  CAS  Google Scholar 

  28. Esser D, Geleijnse JM, Matualatupauw JC, Dower JI, Kromhout D, Hollman PCH, Afman LA (2018) Pure flavonoid epicatechin and whole genome gene expression profiles in circulating immune cells in adults with elevated blood pressure: a randomised double-blind, placebo-controlled, crossover trial. PLoS ONE 13(4):e0194229. https://doi.org/10.1371/journal.pone.0194229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–37, 837a–837d. https://doi.org/10.1093/eurheartj/ehr304

    Article  CAS  Google Scholar 

  30. Fraga CG, Martino VS, Ferraro GE, Coussio JD, Boveris A (1987) Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochem Pharmacol 36(5):717–720. https://doi.org/10.1016/0006-2952(87)90724-6

    Article  PubMed  CAS  Google Scholar 

  31. Fraga CG, Galleano M, Verstraeten SV, Oteiza PI (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Aspects Med 31(6):435–445. https://doi.org/10.1016/j.mam.2010.09.006

    Article  PubMed  CAS  Google Scholar 

  32. Fraga CG, Oteiza PI (2011) Dietary flavonoids: Role of (-)-epicatechin and related procyanidins in cell signaling. Free Radic Biol Med 51(4):813–823. https://doi.org/10.1016/j.freeradbiomed.2011.06.002

    Article  PubMed  CAS  Google Scholar 

  33. Fraga CG, Oteiza PI, Galleano M (2018) Plant bioactives and redox signaling: (-)-epicatechin as a paradigm. Mol Aspects Med 61:31–40. https://doi.org/10.1016/j.mam.2018.01.007

    Article  PubMed  CAS  Google Scholar 

  34. Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA (2019) The effects of polyphenols and other bioactives on human health. Food Funct 10(2):514–528. https://doi.org/10.1039/c8fo01997e

    Article  PubMed  CAS  Google Scholar 

  35. Gajdos A, Gajdos-Tërök M, Horn R (1972) The effect of (+)-catechin on the hepatic level of ATP and the lipid content of liver during experimental steatosis. Biochem Pharmacol 21(4):594–600. https://doi.org/10.1016/0006-2952(72)90338-3

    Article  PubMed  CAS  Google Scholar 

  36. Gajdos A, Gajdos-Török M, Horn R (1972) Therapeutic effect of the (+)-catechin on biochemical disorders of the liver in the ethanol intoxicated rat. C R Seances Soc Biol Fil 166(2):277–279

    PubMed  CAS  Google Scholar 

  37. Galleano M, Verstraeten SV, Oteiza PI, Fraga CG (2010) Antioxidant actions of flavonoids: thermodynamic and kinetic analysis. Arch Biochem Biophys 501(1):23–30. https://doi.org/10.1016/j.abb.2010.04.005

    Article  PubMed  CAS  Google Scholar 

  38. Galleano M, Bernatova I, Puzserova A, Balis P, Sestakova N, Pechanova O, Fraga CG (2013) (-)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. IUBMB Life 65(8):710–715. https://doi.org/10.1002/iub.1185

    Article  PubMed  CAS  Google Scholar 

  39. Garate-Carrillo A, Navarrete-Yañez V, Ortiz-Vilchis P, Guevara G, Castillo C, Mendoza-Lorenzo P, Ceballos G, Ortiz-Flores M, Najera N, Bustamante-Pozo MM, Rubio-Gayosso I, Villarreal F, Ramirez-Sanchez I (2020) Arginase inhibition by (-)-epicatechin reverses endothelial cell aging. Eur J Pharmacol 885:173442. https://doi.org/10.1016/j.ejphar.2020.173442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. GBD 2016 Risk Factors Collaborators (2017) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Lond Engl 390(10100):1345–1422. https://doi.org/10.1016/S0140-6736(17)32366-8

    Article  Google Scholar 

  41. Gómez-Guzmán M, Jiménez R, Sánchez M, Romero M, O’Valle F, Lopez-Sepulveda R, Quintela AM, Galindo P, Zarzuelo MJ, Bailón E, Delpón E, Perez-Vizcaino F, Duarte J (2011) Chronic (-)-epicatechin improves vascular oxidative and inflammatory status but not hypertension in chronic nitric oxide-deficient rats. Br J Nutr 106(9):1337–1348. https://doi.org/10.1017/S0007114511004314

    Article  PubMed  CAS  Google Scholar 

  42. Gómez-Guzmán M, Jiménez R, Sánchez M, Zarzuelo MJ, Galindo P, Quintela AM, López-Sepúlveda R, Romero M, Tamargo J, Vargas F, Pérez-Vizcaíno F, Duarte J (2012) Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med 52(1):70–79. https://doi.org/10.1016/j.freeradbiomed.2011.09.015

    Article  PubMed  CAS  Google Scholar 

  43. Gorgani-Firuzjaee S, Meshkani R (2015) SH2 domain-containing inositol 5-phosphatase (SHIP2) inhibition ameliorates high glucose-induced de-novo lipogenesis and VLDL production through regulating AMPK/mTOR/SREBP1 pathway and ROS production in HepG2 cells. Free Radic Biol Med 89:679–689. https://doi.org/10.1016/j.freeradbiomed.2015.10.036

    Article  PubMed  CAS  Google Scholar 

  44. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74(6):1141–1148. https://doi.org/10.1161/01.res.74.6.1141

    Article  PubMed  CAS  Google Scholar 

  45. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5):494–501. https://doi.org/10.1161/01.res.86.5.494

    Article  PubMed  CAS  Google Scholar 

  46. Gutiérrez-Salmeán G, Ortiz-Vilchis P, Vacaseydel CM, Garduño-Siciliano L, Chamorro-Cevallos G, Meaney E, Villafaña S, Villarreal F, Ceballos G, Ramírez-Sánchez I (2014) Effects of (-)-epicatechin on a diet-induced rat model of cardiometabolic risk factors. Eur J Pharmacol 728:24–30. https://doi.org/10.1016/j.ejphar.2014.01.053

    Article  PubMed  CAS  Google Scholar 

  47. Gutiérrez-Salmeán G, Ortiz-Vilchis P, Vacaseydel CM, Rubio-Gayosso I, Meaney E, Villarreal F, Ramírez-Sánchez I, Ceballos G (2014) Acute effects of an oral supplement of (-)-epicatechin on postprandial fat and carbohydrate metabolism in normal and overweight subjects. Food Funct 5(3):521–527. https://doi.org/10.1039/c3fo60416k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gutiérrez-Salmeán G, Meaney E, Lanaspa MA, Cicerchi C, Johnson RJ, Dugar S, Taub P, Ramírez-Sánchez I, Villarreal F, Schreiner G, Ceballos G (2016) A randomized, placebo-controlled, double-blind study on the effects of (-)-epicatechin on the triglyceride/HDLc ratio and cardiometabolic profile of subjects with hypertriglyceridemia: Unique in vitro effects. Int J Cardiol 223:500–506. https://doi.org/10.1016/j.ijcard.2016.08.158

    Article  PubMed  Google Scholar 

  49. Hid EJ, Fischerman L, Piotrkowski B, Litterio MC, Fraga CG, Galleano M (2020) (-)-Epicatechin protects thoracic aortic perivascular adipose tissue from whitening in high-fat fed mice. Food Funct 11(7):5944–5954. https://doi.org/10.1039/d0fo01148g

    Article  PubMed  CAS  Google Scholar 

  50. Hidalgo I, Nájera N, Meaney E, Pérez-Durán J, Valdespino-Vazquez Y, Villarreal F, Ceballos G (2020) Effects of (-)-epicatechin on the time course of the expression of perilipins in a diet-induced model of nonalcoholic steatohepatitis. J Nutr Biochem 77:108296. https://doi.org/10.1016/j.jnutbio.2019.108296

    Article  PubMed  CAS  Google Scholar 

  51. Hladovec J (1977) Antithrombotic effects of some flavonoids alone and combined with acetylsalicylic acid. Arzneimittelforschung 27(10):1989–1992

    PubMed  CAS  Google Scholar 

  52. Hüttemann M, Lee I, Perkins GA, Britton SL, Koch LG (1979) Malek MH (2013) (-)-Epicatechin is associated with increased angiogenic and mitochondrial signalling in the hindlimb of rats selectively bred for innate low running capacity. Clin Sci Lond Engl 124(11):663–674. https://doi.org/10.1042/CS20120469

    Article  CAS  Google Scholar 

  53. Huynh N, Harris E, Chin-Dusting J, Andrews K (2009) The vascular effects of different arginase inhibitors in rat isolated aorta and mesenteric arteries. Br J Pharmacol 156(1):84–93. https://doi.org/10.1111/j.1476-5381.2008.00036.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ikeda I, Imasato Y, Sasaki E, Nakayama M, Nagao H, Takeo T, Yayabe F, Sugano M (1992) Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochim Biophys Acta 1127(2):141–146. https://doi.org/10.1016/0005-2760(92)90269-2

    Article  PubMed  CAS  Google Scholar 

  55. Ikeda I, Hamamoto R, Uzu K, Imaizumi K, Nagao K, Yanagita T, Suzuki Y, Kobayashi M, Kakuda T (2005) Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats. Biosci Biotechnol Biochem 69(5):1049–1053. https://doi.org/10.1271/bbb.69.1049

    Article  PubMed  CAS  Google Scholar 

  56. Jagannath AB, Crozier A (2010) Biochemistry, nutrition and pharmacology. In: Fraga CG (ed) Plant phenolics and human health, 1st edn. Wiley, New Jersey. ISBN 978–0–740–28721–7

  57. Keller A, Hull SE, Elajaili H, Johnston A, Knaub LA, Chun JH, Walker L, Nozik-Grayck E, Reusch JEB (2020) (-)-Epicatechin modulates mitochondrial redox in vascular cell models of oxidative stress. Oxid Med Cell Longev 2020:6392629. https://doi.org/10.1155/2020/6392629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kirch N, Berk L, Liegl Y, Adelsbach M, Zimmermann BF, Stehle P, Stoffel-Wagner B, Ludwig N, Schieber A, Helfrich HP, Ellinger S (2018) A nutritive dose of pure (-)-epicatechin does not beneficially affect increased cardiometabolic risk factors in overweight-to-obese adults-a randomized, placebo-controlled, double-blind crossover study. Am J Clin Nutr 107(6):948–956. https://doi.org/10.1093/ajcn/nqy066

    Article  PubMed  Google Scholar 

  59. Kluknavsky M, Balis P, Puzserova A, Radosinska J, Berenyiova A, Drobna M, Lukac S, Muchova J, Bernatova I (2016) (-)-Epicatechin prevents blood pressure increase and reduces locomotor hyperactivity in young spontaneously hypertensive rats. Oxid Med Cell Longev 2016:6949020. https://doi.org/10.1155/2016/6949020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kluknavsky M, Balis P, Skratek M, Manka J, Bernatova I (2020) (-)-Epicatechin reduces the blood pressure of young borderline hypertensive rats during the post-treatment period. Antioxid Basel Switz 9(2). https://doi.org/10.3390/antiox9020096

  61. Kuppusamy UR, Das NP (1992) Effects of flavonoids on cyclic AMP phosphodiesterase and lipid mobilization in rat adipocytes. Biochem Pharmacol 44(7):1307–1315. https://doi.org/10.1016/0006-2952(92)90531-m

    Article  PubMed  CAS  Google Scholar 

  62. Litterio MC, Jaggers G, Sagdicoglu Celep G, Adamo AM, Costa MA, Oteiza PI, Fraga CG, Galleano M (2012) Blood pressure-lowering effect of dietary (-)-epicatechin administration in L-NAME-treated rats is associated with restored nitric oxide levels. Free Radic Biol Med 53(10):1894–1902. https://doi.org/10.1016/j.freeradbiomed.2012.08.585

    Article  PubMed  CAS  Google Scholar 

  63. Litterio MC, Vazquez Prieto MA, Adamo AM, Elesgaray R, Oteiza PI, Galleano M, Fraga CG (2015) (-)-Epicatechin reduces blood pressure increase in high-fructose-fed rats: effects on the determinants of nitric oxide bioavailability. J Nutr Biochem 26(7):745–751. https://doi.org/10.1016/j.jnutbio.2015.02.004

    Article  PubMed  CAS  Google Scholar 

  64. Liu C, Vervoort J, Beekmann K, Baccaro M, Kamelia L, Wesseling S, Rietjens IMCM (2020) Interindividual differences in human intestinal microbial conversion of (-)-epicatechin to bioactive phenolic compounds. J Agric Food Chem 68(48):14168–14181. https://doi.org/10.1021/acs.jafc.0c05890

    Article  PubMed Central  CAS  Google Scholar 

  65. Loke WM, Hodgson JM, Proudfoot JM, McKinley AJ, Puddey IB, Croft KD (2008) Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 88(4):1018–1025. https://doi.org/10.1093/ajcn/88.4.1018

    Article  PubMed  CAS  Google Scholar 

  66. López-Sepúlveda R, Gómez-Guzmán M, Zarzuelo MJ, Romero M, Sánchez M, Quintela AM, Galindo P (1979) O´Valle F, Tamargo J, Pérez-Vizcaíno F, Duarte J, Jiménez R (2011) Red wine polyphenols prevent endothelial dysfunction induced by endothelin-1 in rat aorta: role of NADPH oxidase. Clin Sci Lond Engl 120(8):321–333. https://doi.org/10.1042/CS20100311

    Article  CAS  Google Scholar 

  67. Lupton JR, Atkinson SA, Chang N, Fraga CG, Levy J, Messina M, Richardson DP, van Omen B, Yang Y, Griffiths JC, Hathcock J (2014) Exploring the benefits and challenges of establishing a DRI-like process for bioactives. Eur J Nutr 53(1):1–9. https://doi.org/10.1007/s00394-014-0666-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. MacRae K, Connolly K, Vella R, Fenning A (2019) Epicatechin’s cardiovascular protective effects are mediated via opioid receptors and nitric oxide. Eur J Nutr 58(2):515–527. https://doi.org/10.1007/s00394-018-1650-0

    Article  PubMed  CAS  Google Scholar 

  69. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747. https://doi.org/10.1093/ajcn/79.5.727

    Article  PubMed  CAS  Google Scholar 

  70. Marinko M, Jankovic G, Nenezic D, Milojevic P, Stojanovic I, Kanjuh V, Novakovic A (2018) (-)-Epicatechin-induced relaxation of isolated human saphenous vein: roles of K+ and Ca2+ channels. Phytother Res 32(2):267–275. https://doi.org/10.1002/ptr.5969

    Article  PubMed  CAS  Google Scholar 

  71. Moreno-Ulloa A, Cid A, Rubio-Gayosso I, Ceballos G, Villarreal F, Ramirez-Sanchez I (2013) Effects of (-)-epicatechin and derivatives on nitric oxide mediated induction of mitochondrial proteins. Bioorg Med Chem Lett 23(15):4441–6. https://doi.org/10.1016/j.bmcl.2013.05.079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Moreno-Ulloa A, Nogueira L, Rodriguez A, Barboza J, Hogan MC, Ceballos G, Villarreal F, Ramirez-Sanchez I (2015) Recovery of indicators of mitochondrial biogenesis, oxidative stress, and aging with (−)-epicatechin in senile mice. J Gerontol A Biol Sci Med Sci 70(11):1370–1378. https://doi.org/10.1093/gerona/glu131

    Article  PubMed  CAS  Google Scholar 

  73. Moreno-Ulloa A, Mendez-Luna D, Beltran-Partida E, Castillo C, Guevara G, Ramirez-Sanchez I, Correa-Basurto J, Ceballos G, Villarreal F (2015) The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER). Pharmacol Res 100:309–320. https://doi.org/10.1016/j.phrs.2015.08.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Moreno-Ulloa A, Miranda-Cervantes A, Licea-Navarro A, Mansour C, Beltrán-Partida E, Donis-Maturano L, Delgado De la Herrán HC, Villarreal F, Álvarez-Delgado C (2018) (-)-Epicatechin stimulates mitochondrial biogenesis and cell growth in C2C12 myotubes via the G-protein coupled estrogen receptor. Eur J Pharmacol 822:95–107. https://doi.org/10.1016/j.ejphar.2018.01.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Murase T, Misawa K, Haramizu S, Hase T (2009) Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem Pharmacol 78(1):78–84. https://doi.org/10.1016/j.bcp.2009.03.021

    Article  PubMed  CAS  Google Scholar 

  76. Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H, Mitsunaga T, Hashimoto F, Kiso Y (2005) Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem 53(11):4593–4598. https://doi.org/10.1021/jf047814+

    Article  PubMed  CAS  Google Scholar 

  77. Ngamukote S, Mäkynen K, Thilawech T, Adisakwattana S (2011) Cholesterol-lowering activity of the major polyphenols in grape seed. Mol Basel Switz 16(6):5054–5061. https://doi.org/10.3390/molecules16065054

    Article  CAS  Google Scholar 

  78. Ni D, Ai Z, Munoz-Sandoval D, Suresh R, Ellis PR, Yuqiong C, Sharp PA, Butterworth PJ, Yu Z, Corpe CP (2020) Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins. FASEB J 34(8):9995–10010. https://doi.org/10.1096/fj.202000057RR

    Article  PubMed  CAS  Google Scholar 

  79. Novakovic A, Marinko M, Vranic A, Jankovic G, Milojevic P, Stojanovic I, Nenezic D, Ugresic N, Kanjuh V, Yang Q, He GW (2015) Mechanisms underlying the vasorelaxation of human internal mammary artery induced by (-)-epicatechin. Eur J Pharmacol 762(306):312. https://doi.org/10.1016/j.ejphar.2015.05.066

    Article  CAS  Google Scholar 

  80. Oleaga C, Ciudad CJ, Izquierdo-Pulido M, Noé V (2013) Cocoa flavanol metabolites activate HNF-3β, Sp1, and NFY-mediated transcription of apolipoprotein AI in human cells. Mol Nutr Food Res 57(6):986–995. https://doi.org/10.1002/mnfr.201200507

    Article  PubMed  CAS  Google Scholar 

  81. Ottaviani JI, Balz M, Kimball J, Ensunsa JL, Fong R, Momma TY, Kwik-Uribe C, Schroeter H, Keen CL (2015) Safety and efficacy of cocoa flavanol intake in healthy adults: a randomized, controlled, double-masked trial. Am J Clin Nutr 102(6):1425–35. https://doi.org/10.3945/ajcn.115.116178

    Article  PubMed  CAS  Google Scholar 

  82. Panneerselvam M, Tsutsumi YM, Bonds JA, Horikawa YT, Saldana M, Dalton ND, Patel HBP, PM, Roth DM, Patel HH, (2010) Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation. Am J Physiol Heart Circ Physiol 299(5):H1604-1609. https://doi.org/10.1152/ajpheart.00073.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Panneerselvam M, Ali SS, Finley JC, Kellerhals SE, Migita MY, Head BP, Patel PM, Roth DM, Patel HH (2013) Epicatechin regulation of mitochondrial structure and function is opioid receptor dependent. Mol Nutr Food Res 57(6):1007–1014. https://doi.org/10.1002/mnfr.201300026

    Article  PubMed  CAS  Google Scholar 

  84. Parmenter BH, Croft KD, Hodgson JM, Dalgaard F, Bondonno CP, Lewis JR, Cassidy A, Scalbert A, Bondonno NP (2020) An overview and update on the epidemiology of flavonoid intake and cardiovascular disease risk. Food Funct 11(8):6777–6806. https://doi.org/10.1039/d0fo01118e

    Article  PubMed  CAS  Google Scholar 

  85. Piotrkowski B, Calabró V, Galleano M, Fraga CG (2015) (-)-Epicatechin prevents alterations in the metabolism of superoxide anion and nitric oxide in the hearts of L-NAME-treated rats. Food Funct 6(1):155–161. https://doi.org/10.1039/c4fo00554f

    Article  PubMed  CAS  Google Scholar 

  86. Prince PD, Lanzi CR, Toblli JE, Elesgaray R, Oteiza PI, Fraga CG, Galleano M (2016) Dietary (-)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats. Free Radic Biol Med 90:35–46. https://doi.org/10.1016/j.freeradbiomed.2015.11.009

    Article  PubMed  CAS  Google Scholar 

  87. Prince PD, Fraga CG, Galleano M (2020) (-)-Epicatechin administration protects kidneys against modifications induced by short-term l-NAME treatment in rats. Food Funct 11(1):318–327. https://doi.org/10.1039/c9fo02234a

    Article  PubMed  CAS  Google Scholar 

  88. Puranik NV, Srivastava P, Bhatt G, John Mary DJS, Limaye AM, Sivaraman J (2019) Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERα) by various parameters and molecular modelling approach. Sci Rep 9(1):7450. https://doi.org/10.1038/s41598-019-43768-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Rabadan-Chávez G, Quevedo-Corona L, Garcia AM, Reyes-Maldonado E, Jaramillo-Flores ME (2016) Cocoa powder, cocoa extract and epicatechin attenuate hypercaloric diet-induced obesity through enhanced β-oxidation and energy expenditure in white adipose tissue. J Funct Foods 20:54–67. https://doi.org/10.1016/j.jff.2015.10.016

    Article  CAS  Google Scholar 

  90. Ramirez-Sanchez I, Maya L, Ceballos G (1979) Villarreal F (2010) (-)-Epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathways. Hypertens Dallas Tex 55(6):1398–1405. https://doi.org/10.1161/HYPERTENSIONAHA.109.147892

    Article  CAS  Google Scholar 

  91. Ramirez-Sanchez I, Maya L, Ceballos G, Villarreal F (2011) (-)-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cells. Am J Physiol Cell Physiol 300(4):C880-887. https://doi.org/10.1152/ajpcell.00406.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ramírez-Sánchez I, Rodríguez A, Moreno-Ulloa A, Ceballos G, Villarreal F (2016) (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: potential role of endothelial nitric oxide synthase. Diab Vasc Dis Res 13(3):201–210. https://doi.org/10.1177/1479164115620982

    Article  PubMed  CAS  Google Scholar 

  93. Rodriguez Lanzi C, Perdicaro DJ, Landa MS, Fontana A, Antoniolli A, Miatello RM, Oteiza PI, Vazquez Prieto MA (2018) Grape pomace extract induced beige cells in white adipose tissue from rats and in 3T3-L1 adipocytes. J Nutr Biochem 56:224–233. https://doi.org/10.1016/j.jnutbio.2018.03.001

    Article  PubMed  CAS  Google Scholar 

  94. Rodriguez Lanzi C, Perdicaro DJ, Gambarte Tudela J, Muscia V, Fontana AR, Oteiza PI, Vazquez Prieto MA (2020) Grape pomace extract supplementation activates FNDC5/irisin in muscle and promotes white adipose browning in rats fed a high-fat diet. Food Funct 11(2):1537–1546. https://doi.org/10.1039/c9fo02463h

    Article  PubMed  CAS  Google Scholar 

  95. Rodriguez-Mateos A, Weber T, Skene SS, Ottaviani JI, Crozier A, Kelm M, Schroeter H, Heiss C (2018) Assessing the respective contributions of dietary flavanol monomers and procyanidins in mediating cardiovascular effects in humans: randomized, controlled, double-masked intervention trial. Am J Clin Nutr 108(6):1229–1237. https://doi.org/10.1039/c9fo02463h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Saltiel AR, Olefsky JM (2013) Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 127(1):1–4. https://doi.org/10.1172/JCI92035

    Article  Google Scholar 

  97. Sanchez-Bridge B, Lévèques A, Li H, Bertschy E, Patin A, Actis-Goretta L (2015) Modulation of (-)-epicatechin metabolism by coadministration with other polyphenols in Caco-2 cell model. Drug Metab Dispos Biol Fate Chem 43(1):9–16. https://doi.org/10.1124/dmd.114.060590

    Article  PubMed  CAS  Google Scholar 

  98. Sano T, Nagayasu S, Suzuki S, Iwashita M, Yamashita A, Shinjo T, Sanui T, Kushiyama A, Kanematsu T, Asano T, Nishimura F (2017) Epicatechin downregulates adipose tissue CCL19 expression and thereby ameliorates diet-induced obesity and insulin resistance. Nutr Metab Cardiovasc Dis NMCD 27(3):249–259. https://doi.org/10.1016/j.numecd.2016.11.008

    Article  PubMed  CAS  Google Scholar 

  99. Schnorr O, Brossette T, Momma TY, Kleinbongard P, Keen CL, Schroeter H, Sies H (2008) Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo. Arch Biochem Biophys 476(2):211–215. https://doi.org/10.1016/j.abb.2008.02.040

    Article  PubMed  CAS  Google Scholar 

  100. Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, Kelm M (2006) (-)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A 103(4):1024–1029. https://doi.org/10.1073/pnas.0510168103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Si H, Fu Z, Babu PVA, Zhen W, Leroith T, Meaney MP, Voelker KA, Jia Z, Granje RW, Liu D (2011) Dietary epicatechin promotes survival of obese diabetic mice and Drosophila melanogaster. J Nutr 141(6):1095–1100. https://doi.org/10.3945/jn.110.134270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Si H, Wang X, Zhang L, Parnell LD, Ahmed B, LeRoith T, Ansah TA, Zhang L, Li J, Ordovás JM, Si H, Liu D, Lai CQ (2019) Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice. FASEB J 33(1):965–977. https://doi.org/10.1096/fj.201800554RR

    Article  PubMed  CAS  Google Scholar 

  103. Steffen Y, Schewe T, Sies H (2005) Epicatechin protects endothelial cells against oxidized LDL and maintains NO synthase. Biochem Biophys Res Commun 331(4):1277–1283. https://doi.org/10.1016/j.bbrc.2005.04.035

    Article  PubMed  CAS  Google Scholar 

  104. Steffen Y, Schewe T, Sies H (2007) (-)-Epicatechin elevates nitric oxide in endothelial cells via inhibition of NADPH oxidase. Biochem Biophys Res Commun 359(3):828–833. https://doi.org/10.1016/j.bbrc.2007.05.200

    Article  PubMed  CAS  Google Scholar 

  105. Steffen Y, Gruber C, Schewe T, Sies H (2008) Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys 469(2):209–219. https://doi.org/10.1016/j.abb.2007.10.012

    Article  PubMed  CAS  Google Scholar 

  106. Varela CE, Rodriguez A, Romero-Valdovinos M, Mendoza-Lorenzo P, Mansour C, Ceballos G, Villarreal F, Ramirez-Sanchez I (2017) Browning effects of (-)-epicatechin on adipocytes and white adipose tissue. Eur J Pharmacol 811:48–59. https://doi.org/10.1016/j.ejphar.2017.05.051

    Article  PubMed  CAS  Google Scholar 

  107. Varghese GK, Abraham R, Chandran NN, Habtemariam S (2019) Identification of lead molecules in Garcinia mangostana L. against pancreatic cholesterol esterase activity: an in silico approach. Interdiscip Sci Comput Life Sci 11(2):170–9. https://doi.org/10.1007/s12539-017-0252-5

    Article  CAS  Google Scholar 

  108. Vazquez-Prieto MA, Bettaieb A, Haj FG, Fraga CG, Oteiza PI (2012) (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Arch Biochem Biophys 527(2):113–118. https://doi.org/10.1016/j.abb.2012.02.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Wang S, Sun Z, Dong S, Liu Y, Liu Y (2014) Molecular interactions between (−)-epigallocatechin gallate analogs and pancreatic lipase. Schreiber G, editor. PLoS ONE 9(11):e111143. https://doi.org/10.1371/journal.pone.0111143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Williamson G (2013) Possible effects of dietary polyphenols on sugar absorption and digestion. Mol Nutr Food Res 57(1):48–57. https://doi.org/10.1002/mnfr.201200511

    Article  PubMed  CAS  Google Scholar 

  111. Yasuda A, Natsume M, Osakabe N, Kawahata K, Koga J (2011) Cacao polyphenols influence the regulation of apolipoprotein in HepG2 and Caco2 cells. J Agric Food Chem 59(4):1470–1476. https://doi.org/10.1021/jf103820b

    Article  PubMed  CAS  Google Scholar 

  112. Yilmazer-Musa M, Griffith AM, Michels AJ, Schneider E, Frei B (2012) Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J Agric Food Chem 60(36):8924–8929. https://doi.org/10.1021/jf301147n

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Yuda N, Tanaka M, Suzuki M, Asano Y, Ochi H, Iwatsuki K (2012) Polyphenols extracted from black tea (Camellia sinensis) residue by hot-compressed water and their inhibitory effect on pancreatic lipase in vitro. J Food Sci 77(12):H254-261. https://doi.org/10.1111/j.1750-3841.2012.02967.x

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from University of Buenos Aires, Argentina, 20020170100586BA (MG) and 20020190100157BA (CGF), National Scientific and Technical Research Council-Argentina PIP11220170100585CO (MG), and National Agency for Scientific and Technological Promotion, Argentina PICT2018-03052 (MG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Galleano.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is published as part of the Special Issue on “Pathophysiological mechanisms of cardiometabolic diseases.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hid, E.J., Mosele, J.I., Prince, P.D. et al. ( −)-Epicatechin and cardiometabolic risk factors: a focus on potential mechanisms of action. Pflugers Arch - Eur J Physiol 474, 99–115 (2022). https://doi.org/10.1007/s00424-021-02640-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02640-0

Keywords

Navigation