Skip to main content

Advertisement

Log in

Ideomotor silence: the case of complete paralysis and brain–computer interfaces (BCI)

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The paper presents some speculations on the loss of voluntary responses and operant learning in long-term paralysis in human patients and curarized rats. Based on a reformulation of the ideomotor thinking hypothesis already described in the 19th century, we present evidence that instrumentally learned responses and intentional cognitive processes extinguish as a consequence of long-term complete paralysis in patients with amyotrophic lateral sclerosis (ALS). Preliminary data collected with ALS patients during extended and complete paralysis suggest semantic classical conditioning of brain activity as the only remaining communication possibility in those states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam, G. (1998). Visceral Perception. New York: Plenum Press.

    Google Scholar 

  • Barber, T.X., Kamiya, J. & Miller, N.E. (eds) (1971–1978). Biofeedback and Self-Control. Aldine: Aldine Series.

  • Birbaumer, N. (2006a). Brain-computer-interface research: coming of age. Clinical Neurophysiology, 117, 479–483.

    Article  PubMed  Google Scholar 

  • Birbaumer, N. (2006b). Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology, 43, 517–532.

    Article  PubMed  Google Scholar 

  • Birbaumer, N., & Cohen, L. (2007). Brain-computer-interfaces (BCI): Communication and restoration of movement in paralysis. The Journal of Physiology, 579(3), 621–636.

    Article  PubMed  Google Scholar 

  • Birbaumer, N., Elbert, T., Canavan, A., & Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70, 1–41.

    PubMed  Google Scholar 

  • Birbaumer, N., Ramos Murguialday, A., & Cohen, L. (2008). Brain-computer-interface (BCI) in paralysis. Current Opinion in Neurology, 21, 634–638.

    Article  PubMed  Google Scholar 

  • Birbaumer, N. & Schmidt, R.F. (1990). Biologische Psychologie (7th edn. 2010). Berlin: Springer.

  • Braitenberg, V., & Schüz, A. (1991). Anatomy of the cortex, statistics and geometry. Berlin: Springer.

    Google Scholar 

  • Caria, A., Veit, R., Sitaram, R., Lotze, M., Weiskopf, N., Grodd, W., et al. (2007). Regulation of anterior insular cortex activity using real-time fMRI. NeuroImage, 35, 1238–1246.

    Article  PubMed  Google Scholar 

  • Dworkin, B. R. (1993). Learning and Physiological Regulation. Chicago: University of Chicago Press.

    Google Scholar 

  • Dworkin, B. R., & Miller, N. E. (1986). Failure to replicate visceral learning in the acute curarized rat preparation. Behavioral Neuroscience, 100, 299–314.

    Article  PubMed  Google Scholar 

  • Elbert, T., Rockstroh, B., Lutzenberger, W., & Birbaumer, N. (eds.). (1984). Self-regulation of the brain and behavior. New York: Springer.

    Google Scholar 

  • Felton, E. A., Wilson, J. A., Williams, J. C., & Garell, P. C. (2007). Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Journal of Neurosurgery, 106, 495–500.

    Article  PubMed  Google Scholar 

  • Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J. H., & Kaiser, J. (2003). Neurofeed-back training for attention-deficit/hyperactivity disorder in children: a comparison with methylphenidate. Applied Psychophysiology and Biofeedback, 28(1), 1–12.

    Article  PubMed  Google Scholar 

  • Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (2007). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neurophysiology, 2, 1527–1537.

    Google Scholar 

  • Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5, 382–385.

    Article  PubMed  Google Scholar 

  • Halder, S., Agorastos, D., Veit, R., Hammer, E.M., Lee, S., Varkuti, B., et al. (2011). Neural mechanisms of brain-computer interface control. NeuroImage, 55, 1779–1790

  • He, B. J., & Raichle, M. E. (2009). The fMRI signal, slow cortical potential and consciousness. Trends in Cognitive Science, 13(7), 302–309.

    Article  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior. New York: Wiley.

    Google Scholar 

  • Hobson, J. A. (2009). REM sleep and dreaming: Towards a theory of protoconsciousness. Nature Reviews Neuroscience, 10(11), 803–813.

    PubMed  Google Scholar 

  • Holland, J., & Skinner, B. F. (1961). The analysis of behavior. New York: MacGraw-Hill.

    Google Scholar 

  • Jackson, A., Mavoori, J., & Fetz, E. (2006). Long-term motor cortex plasticity induced by an electronic neural implant. Nature, 444, 56–60.

    Article  PubMed  Google Scholar 

  • James, W. (1890). The principles of psychology. New York: Dover (1950).

  • Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14, 103–109.

    Article  Google Scholar 

  • Karim, A. A., Kammer, T., Cohen, L., & Birbaumer, N. (2004). Effects of TMS and tDCS on the physiological regulation of cortical excitability in a brain-computer interface. Biomedizinische Technik, 49, 55–57.

    Google Scholar 

  • Kotchoubey, B., Lang, S., Winter, S., & Birbaumer, N. (2003). Cognitive processing in completely paralyzed patients with amyotrophic lateral sclerosis. European Journal of Neurology, 10(5), 551–558.

    Article  PubMed  Google Scholar 

  • Kotchoubey, B., Strehl, U., Uhlmann, C., Holzapfel, S., König, M., Fröscher, W., et al. (2001). Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia, 42(3), 406–416.

    Article  PubMed  Google Scholar 

  • Kübler, A., & Birbaumer, N. (2008). Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clinical Neurophysiology, 119, 2658–2666.

    Article  PubMed  Google Scholar 

  • Lakerveld, J., Kotchoubey, B., & Kübler, A. (2008). Cognitive function in patients with late stage amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(1), 25–29.

    Article  Google Scholar 

  • Lebedev, M. A., & Nicolelis, M. A. (2006). Brain machine interfaces: Past, present and future. Trends in Neurosciences, 29, 536–546.

    Article  PubMed  Google Scholar 

  • Miller, N. E. (1969). Learning of visceral and glandular responses. Science, 163, 434–445.

    Article  PubMed  Google Scholar 

  • Nagai, Y., Goldstein, L. H., Fenwick, P. B. C., & Trimble, M. R. (2004). Clinical efficacy of galvanic skin response biofeedback training in reducing seizures in adult epilepsy: A preliminary randomized controlled study. Epilepsy & Behavior, 5, 216–223.

    Article  Google Scholar 

  • Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Halder, S., et al. (2008). A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clinical Neurophysiology, 119(8), 1909–1916.

    Article  PubMed  Google Scholar 

  • Ramos Murguialday, A., Hill, J., Bensch, M., Martens, S., Halder, S., Nijboer, F., et al. (2010). Transition from the locked into the completely locked in state: A physiological analysis. Clinical Neurophysiology,. doi:10.1016.

    PubMed  Google Scholar 

  • Riehle, A., & Vaadia, E. (eds.). (2005). Motor cortex in voluntary movements. A districuted system for distributed funtions. Boca Raton: CRC Press.

    Google Scholar 

  • Ringholz, G. M., Appel, S. H., Bradshaw, M., Cooke, N. A., Mosnik, D. M., & Schulz, P. E. (2005). Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology, 65, 586–590.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  PubMed  Google Scholar 

  • Rockstroh, B., Elbert, T., Birbaumer, N., Wolf, P., Düchting-Röth, A., Reker, M., et al. (1993). Cortical self-regulation in patients with epilepsies. Epilepsy Research, 14, 63–72.

    Article  PubMed  Google Scholar 

  • Rösler, F., Heil, M., & Röder, B. (1997). Slow negative brain potentials as reflections of specific modular resources of cognition. Biological Psychology, 45, 109–141.

    Article  PubMed  Google Scholar 

  • Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136(6), 943–974.

    Article  PubMed  Google Scholar 

  • Silvoni, S., Volpato, C., Cavinato, M., Marchetti, M., Priftis, K., Merico, A., et al. (2009). P300-based brain-computer interface communication: Evaluation and follow-up in amyotrophic lateral sclerosis. Frontiers in Neuroscience, 19(3), 60.

    Google Scholar 

  • Sitaram, R., Caria, A., Veit, R., Gaber, T., Rota, G., Kübler, A., et al. (2007a). FMRI brain-computer interface: a tool for neuroscientific research and treatment. Computational Intelligence and Neuroscience (Article ID 82069). doi:10.1155/2007/82069.

  • Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., et al. (2007b). Temporal classification of multi-channel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage, 34, 1416–1427.

    Article  PubMed  Google Scholar 

  • Skinner, F. (1953). Science and human behavior. New York: Macmillan.

    Google Scholar 

  • Sterman, M. B., & Clemente, C. D. (1962). Forebrain inhibitory mechanisms: Cortical synchronization induced by basal forebrain stimulation. Experimental Neurology, 6, 91–102.

    Article  PubMed  Google Scholar 

  • Strauch, I., & Meier, B. (1992). Dem Träumen auf der Spur. Bern: Huber.

    Google Scholar 

  • Strehl, U., Leins, U., Goth, G., Klinger, C., Hinterberger, T., & Birbaumer, N. (2006). Self-regulation of slow cortical potentials—a new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics, 118(5), 1530–1540.

    Article  Google Scholar 

  • Velliste, M., Perel, S., Spalding, M. C., et al. (2008). Cortical control of a prothetic arm for self-feeding. Nature, 453, 1098–1101.

    Article  PubMed  Google Scholar 

  • Volpato, C., Piccione, F., Silvoni, S., Cavinato, M., Palmieri, A., Meneghello, F., et al. (2010). Working memory in amyotrophic lateral sclerosis: Auditory event-related potentials and Neuropsychological evidence. Journal of Clinical Neurophysiology, 27(3), 198–206.

    Article  PubMed  Google Scholar 

  • Walker, J. E., & Kozlowski, G. (2005). Neurofeedback training of epilepsy. Child and Adolescent Psychiatry Clinics of North America, 14, 163–176.

    Article  Google Scholar 

  • Weiskopf, N., Scharnowski, F., Veit, R., Goebel, R., Birbaumer, N., & Mathiak, K. (2005). Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). Journal of Physiology—Paris, 98, 357–373.

    Google Scholar 

  • Wilhelm, B., Jordan, M., & Birbaumer, N. (2006). Communication in locked-in syndrome: Effects of imagery on salivary pH. Neurology, 67, 534–535.

    Article  PubMed  Google Scholar 

  • Ziessler, M., Nattkemper, D., & Frensch, P. A. (2004). The role of anticipation and intention in the learning of effects of self-performed actions. Psychological Research, 68, 163–175.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Wildgruber.

Additional information

Dedicated to my friend and colleague Frank Rösler at the occasion for his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birbaumer, N., Piccione, F., Silvoni, S. et al. Ideomotor silence: the case of complete paralysis and brain–computer interfaces (BCI). Psychological Research 76, 183–191 (2012). https://doi.org/10.1007/s00426-012-0412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-012-0412-5

Keywords

Navigation