Skip to main content
Log in

Manganese-doped carbon quantum dots for fluorometric and magnetic resonance (dual mode) bioimaging and biosensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Manganese-doped carbon quantum dots (MnCQDs) were prepared through one-step hydrothermal method using citric acid and manganese tetraphenyl porphyrin as carbon sources in aqueous media. The structure of MnCQDs was confirmed by TEM, XRD, and XPS. The MnCQDs display a typical excitation-dependent emission behavior and exhibit bright green luminescence (with a peak at 482 nm) under UV irradiation (365 nm) and a fluorescence quantum yield of 13%. The MnCQDs can be used as a fluorescent probe for ferric ion in aqueous solution with a 220 nM detection limit. The MTT assay demonstrated the low cytotoxicity of MnCQDs towards HeLa cells. Due to the excitation-dependent emission properties, MnCQDs can be used as a multi-color (blue, green, and red) bioimaging agent in cancer cells and in living zebrafish. The application of MnCQDs as selective biosensing probe for Fe3+ was also realized in cells and zebrafish mode. Because of the existence of paramagnetic ions, MnCQDs demonstrate an enhanced magnetic resonance (MR) signal. Thus, the MnCQDs can serve as a positive contrast agent for MR imaging.

Schematic presentation of the preparation of luminescent manganese-doped carbon quantum dots (MnCQDs). MnCQDs showed good magnetic resonance effect and can be used as a fluorescence probe for the detection of Fe3+ in HeLa cells and zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H (2014) Si-doped carbon quantum dots: a facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl Mater Interfaces 6:6797–6805. https://doi.org/10.1021/am500403n

    Article  CAS  PubMed  Google Scholar 

  2. Perez A, Bardotti L, Prevel B, Jensen P, Treilleux M, Mélinon P, Gierak J, Faini G, Mailly D (2002) Quantum-dot systems prepared by 2D organization ofnanoclusters preformed in the gas phase on functionalizedsubstrates. New J Phys 4:76. https://doi.org/10.1088/1367-2630/4/1/376

    Article  Google Scholar 

  3. Zhao S, Lan M, Zhu X, Xue H, Ng TW, Meng X, Lee CS, Wang P, Zhang W (2015) Green synthesis of Bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7:17054–17060. https://doi.org/10.1021/acsami.5b03228

    Article  CAS  PubMed  Google Scholar 

  4. Hsu PC, Chen PC, Ou CM, Chang HY, Chang HT (2013) Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J Mater Chem B 1:1774–1781. https://doi.org/10.1039/c3tb00545c

    Article  CAS  PubMed  Google Scholar 

  5. Wu F, Su H, Cai Y, Wong WK, Jiang W, Zhu X (2018) Porphyrin-implanted carbon Nanodots for Photoacoustic imaging and in vivo breast Cancer ablation. ACS Appl Bio Mater 1:110–117. https://doi.org/10.1021/acsabm.8b00029

    Article  CAS  Google Scholar 

  6. Ying LS, Wei S (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  Google Scholar 

  7. Gather MC, Reineke S (2015) Recent advances in light outcoupling from white organic light-emitting diodes. J Photonics Energy 5:057607. https://doi.org/10.1117/1.JPE.5.057607

    Article  CAS  Google Scholar 

  8. Zhao A, Chen Z, Zhao C, Gao N, Ren J, Qu X (2015) Recent advances in bioapplications of C-dots. Carbon 85:309–327. https://doi.org/10.1016/j.carbon.2014.12.045

    Article  CAS  Google Scholar 

  9. Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84:6220–6224. https://doi.org/10.1021/ac3012126

    Article  CAS  PubMed  Google Scholar 

  10. Wu F, Yue L, Su H, Wang K, Yang L, Zhu X (2018) Carbon dots @ platinum Porphyrin composite as Theranostic Nanoagent for efficient photodynamic Cancer therapy. Nanoscale Res Lett 13:357

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xin L, Pan J, Feng X, Zhang X (2016) Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci Rep 6:31100. https://doi.org/10.1038/srep36222

    Article  CAS  Google Scholar 

  12. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  13. Qian Z, Ma J, Shan X, Feng H, Shao L, Chen J (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem Eur J 20:2254–2263. https://doi.org/10.1002/chem.201304374

    Article  CAS  PubMed  Google Scholar 

  14. Su H, Liao Y, Wu F, Sun X, Liu H, Wang K, Zhu X (2018) Cetuximab-conjugated iodine doped carbon dots as a dual fluorescent/CT probe for targeted imaging of lung cancer cells. Colloid Surf B 170:194–200

    Article  CAS  Google Scholar 

  15. Zhang Y, Wang Y, Jia J, Wang J (2012) Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sens Actuators B Chem 171:580–587

    Article  Google Scholar 

  16. Wu F, Su H, Zhu X, Wang K, Zhang Z, Wong WK (2016) Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications. J Mater Chem B 4:6366–6372. https://doi.org/10.1039/C6TB01646D

    Article  CAS  PubMed  Google Scholar 

  17. Wu F, Yue L, Yang L, Wang K, Liu G, Luo X, Zhu X (2018) Ln(III) chelates-functionalized carbon quantum dots: synthesis, optical studies and multimodal bioimaging applications. Colloid Surf B 175:272–280

    Article  Google Scholar 

  18. Liu R, Huang H, Li H, Liu Y, Zhong J, Li Y, Zhang S, Kang Z (2014) Metal nanoparticle/carbon quantum dot composite as a Photocatalyst for high-efficiency cyclohexane oxidation. ACS Catal 4:328–336

    Article  CAS  Google Scholar 

  19. Sun S, Guan Q, Liu Y, Wei B, Yang Y, Yu Z (2019) Highly luminescence manganese doped carbon dots. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2019.01.014

    Article  CAS  Google Scholar 

  20. Dhenadhayalan N, Lin KC (2015) Chemically induced fluorescence switching of carbon-dots and its multiple logic gate implementation. Sci Rep 5:10012. https://doi.org/10.1038/srep10012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu F, Su H, Wang K, Wong WK, Zhu X (2017) Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells. Int J Nanomedicine 12:7375–7391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan S, Wang F, Yang G, Lu C, Nie J, Chen Z, Ren J, Qiu Y, Sun Q, Zhao C, Zhu WH (2018) Highly sensitive Ratiometric self-assembled Micellar Nanoprobe for Nitroxyl and its application in vivo. Anal Chem 90:3914–3919. https://doi.org/10.1021/acs.analchem.7b04787

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Z, Wang F, Yang G, Lu C, Nie J, Chen Z, Ren J, Sun Q, Zhao C, Zhu WH (2017) A Ratiometric fluorescent probe for monitoring Leucine Aminopeptidase in living cells and Zebrafish model. Anal Chem 89:11576–11582. https://doi.org/10.1021/acs.analchem.7b02910

    Article  CAS  PubMed  Google Scholar 

  24. Fan Y, Cheng H, Zhou C, Xie X, Liu Y, Dai L, Zhang J, Qu L (2012) Honeycomb architecture of carbon quantum dots: a new efficient substrate to support gold for stronger SERS. Nanoscale 4:1776–1781. https://doi.org/10.1039/c2nr12015a

    Article  CAS  PubMed  Google Scholar 

  25. Soomro RA, Nafady A, Sirajuddin MN, Sherazi TH, Kalwar NH (2014) L -cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions. Talanta 130:415–422. https://doi.org/10.1016/j.talanta.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  26. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K (2015) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  Google Scholar 

  27. Liu Y, Liu C, Zhang Z (2012) Synthesis of highly luminescent graphitized carbon dots and the application in the Hg2+ detection. Appl Surf Sci 263:481–485. https://doi.org/10.1016/j.apsusc.2012.09.088

    Article  CAS  Google Scholar 

  28. Sharma V, Saini AK, Shaikh MM (2016) Multicolour fluorescent carbon nanoparticle probes for live cell imaging cum dual palladium and mercury sensor. J Mater Chem B 4:2466–2476. https://doi.org/10.1039/C6TB00238B

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Zhao Y, Zhang Y (2014) One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sensors Actuators B Chem 196:647–652. https://doi.org/10.1016/j.snb.2014.02.053

    Article  CAS  Google Scholar 

  30. Cayuela A, Soriano ML, Valcárcel M (2015) Photoluminescent carbon dot sensor for carboxylated multiwalled carbon nanotube detection in river water. Sensors Actuators B Chem 207:596–601. https://doi.org/10.1016/j.snb.2014.10.102

    Article  CAS  Google Scholar 

  31. Wu F, Yang M, Zhang H, Zhu S, Zhu X, Wang K (2018) Facile synthesis of sulfur-doped carbon quantum dots from vitamin B1 for highly selective detection of Fe3+ ion. Opt Mater 77:258–263. https://doi.org/10.1016/j.optmat.2018.01.048

    Article  CAS  Google Scholar 

  32. Yang Q, Wei L, Zheng X, Xiao L (2015) Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins. Sci Rep 5:17727. https://doi.org/10.1038/srep18583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun Q, Yang SH, Wu L, Dong QJ, Yang WC, Yang GF (2016) Detection of intracellular Selenol-containing molecules using a fluorescent probe with near-zero background signal. Anal Chem 88:6084–6091. https://doi.org/10.1021/acs.analchem.6b01545

    Article  CAS  PubMed  Google Scholar 

  34. Adams RD, Layland R, Payen C (1996) A new manganese ortho-arsenate. The synthesis, structure and magnetic properties of Ba 2 Mn(AsO4)2. Polyhedron 15:1235–1239. https://doi.org/10.1016/0277-5387(95)00383-5

    Article  CAS  Google Scholar 

  35. Wu F, Chen J, Li Z, Su H, Leung KCF, Wang H, Zhu X (2018) Red/near-infrared emissive Metalloporphyrin-based Nanodots for magnetic resonance imaging-guided photodynamic therapy in vivo. Part Part Syst Charact 35:1800208. https://doi.org/10.1002/ppsc.201800208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for the support from National Natural Science Foundation of China (grant no. 21601142, 21804102), Natural Science Foundation of Hubei Province (grant no. 2018CFB159, 2017CFB222) and the 10th Graduate Innovative Fund of Wuhan Institute of Technology (CX2018005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Sun or Fengshou Wu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Li, H., Liu, Q. et al. Manganese-doped carbon quantum dots for fluorometric and magnetic resonance (dual mode) bioimaging and biosensing. Microchim Acta 186, 315 (2019). https://doi.org/10.1007/s00604-019-3407-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3407-8

Keywords

Navigation