Skip to main content
Log in

Mitochondrial VDAC and hexokinase together modulate plant programmed cell death

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The voltage-dependent anion channel (VDAC) and mitochondrially located hexokinase have been implicated both in pathways leading to cell death on the one hand, and immortalization in tumor formation on the other. While both proteins have also been implicated in death processes in plants, their interaction has not been explored. We have examined cell death following heterologous expression of a rice VDAC in the tobacco cell line BY2 and in leaves of tobacco plants and show that it is ameliorated by co-expression of hexokinase. Hexokinase also abrogates death induced by H2O2. We conclude that the ratio of expression of the two proteins and their interaction play a major role in modulating death pathways in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdullah R, Cocking EC, Thompson JA (1986) Bio/Technol 4:1087–1090

    Article  Google Scholar 

  • Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V (2008) Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem 283:13482–13490

    Article  PubMed  CAS  Google Scholar 

  • Ameisen JC (2002) On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 9:367–393

    Article  PubMed  CAS  Google Scholar 

  • Azoulay-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2004) In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Biochem J 377:347–355

    Article  PubMed  CAS  Google Scholar 

  • Bahamonde MI, Valverde MA (2003) Voltage-dependent anion channel localises to the plasma membrane and peripheral but not perinuclear mitochondria. Pflugers Archiv 446:309–313

    PubMed  CAS  Google Scholar 

  • Bernardi P, Broekemeier KM, Pfeiffer DR (1994) Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr 26:509–517

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Pereira J, Meyer LE, Machado LB, Oliveira MF, Galina A (2009) Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity. Plant Physiol 149:1099–1110

    Article  PubMed  CAS  Google Scholar 

  • Casolo V, Petrussa E, Krajnakova J, Macri F, Vianello A (2005) Involvement of the mitochondrial K(+)ATP channel in H2O2- or NO-induced programmed death of soybean suspension cell cultures. J Exp Bot 56:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Colombini M (1989) Voltage gating in the mitochondrial channel, VDAC. J Membr Biol 111:103–111

    Article  PubMed  CAS  Google Scholar 

  • Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256–257:107–115

    Article  PubMed  Google Scholar 

  • Cossarizza A, Kalashnikova G, Grassilli E, Chiappelli F, Salvioli S, Capri M, Barbieri D, Troiano L, Monti D, Franceschi C (1994) Mitochondrial modifications during rat thymocyte apoptosis: a study at the single cell level. Exp Cell Res 214:323–330

    Article  PubMed  CAS  Google Scholar 

  • Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant cell 11:1253–1266

    PubMed  CAS  Google Scholar 

  • Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol Biochem 44:483–493

    Article  PubMed  CAS  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. John Wiley & Sons, London

    Google Scholar 

  • Elkeles A, Breiman A, Zizi M (1997) Functional differences among wheat voltage-dependent anion channel (VDAC) isoforms expressed in yeast. Indication for the presence of a novel VDAC-modulating protein? J Biol Chem 272:6252–6260

    Article  PubMed  CAS  Google Scholar 

  • Forner J, Binder S (2007) The red fluorescent protein eqFP611: application in subcellular localization studies in higher plants. BMC Plant Biology 7

  • Galluzzi L, Kepp O, Tajeddine N, Kroemer G (2008) Disruption of the hexokinase–VDAC complex for tumor therapy. Oncogene 27:4633–4635

    Article  PubMed  CAS  Google Scholar 

  • Giese JO, Herbers K, Hoffmann M, Klosgen RB, Sonnewald U (2005) Isolation and functional characterization of a novel plastidic hexokinase from Nicotiana tabacum. FEBS Lett 579:827–831

    Article  PubMed  CAS  Google Scholar 

  • Gincel D, Zaid H, Shoshan-Barmatz V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358:147–155

    Article  PubMed  CAS  Google Scholar 

  • Godbole A, Mitra R, Dubey AK, Reddy PS, Mathew MK (2011) Bacterial expression, purification and characterization of a rice voltage-dependent, anion-selective channel isoform, OsVDAC4. J Membr Biol 244:67–80

    Article  PubMed  CAS  Google Scholar 

  • Godbole A, Varghese J, Sarin A, Mathew MK (2003) VDAC is a conserved element of death pathways in plant and animal systems. Biochim Biophys Acta 1642:87–96

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci U S A 93:12094–12097

    Article  PubMed  CAS  Google Scholar 

  • Guchelaar HJ, Vermes A, Vermes I, Haanen C (1997) Apoptosis: molecular mechanisms and implications for cancer chemotherapy. Pharm World Sci: PWS 19:119–125

    Article  PubMed  CAS  Google Scholar 

  • Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell calcium 40:553–560

    Article  PubMed  CAS  Google Scholar 

  • Holsters M, Waele D le, Depicker A, Messens E, Montagu M van, Schell J (1978) Transfect ion and transformation of Agrobacterium tumefaciens. Mol Gen Genet 181–187

  • Homble F, Krammer EM, Prevost M (2012) Plant VDAC: facts and speculations. Biochim Biophys Acta 1818:1486–1501

    Article  PubMed  CAS  Google Scholar 

  • Hua F, Cornejo MG, Cardone MH, Stokes CL, Lauffenburger DA (2005) Effects of Bcl-2 levels on Fas signaling-induced caspase-3 activation: molecular genetic tests of computational model predictions. J Immunol 175:985–995

    PubMed  CAS  Google Scholar 

  • Israelson A, Zaid H, Abu-Hamad S, Nahon E, Shoshan-Barmatz V (2008) Mapping the ruthenium red-binding site of the voltage-dependent anion channel-1. Cell calcium 43:196–204

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Lim JH, Ahn CS, Park K, Kim GT, Kim WT, Pai HS (2006) Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant cell 18:2341–2355

    Article  PubMed  CAS  Google Scholar 

  • Kusano T, Tateda C, Berberich T, Takahashi Y (2009) Voltage-dependent anion channels: their roles in plant defense and cell death. Plant Cell Rep 28:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Lacomme C, Santa Cruz S (1999) Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci U S A 96:7956–7961

    Article  PubMed  CAS  Google Scholar 

  • Lee LY, Fang MJ, Kuang LY, Gelvin SB (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Meth 4:24

    Article  Google Scholar 

  • Li J, Xu H, Bentley WE, Rao G (2002) Impediments to secretion of green fluorescent protein and its fusion from Saccharomyces cerevisiae. Biotechnol Prog 18:831–838

    Article  PubMed  CAS  Google Scholar 

  • Lieberthal W, Levine JS (1996) Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am J Physiol 271:F477–F488

    PubMed  CAS  Google Scholar 

  • Lin J, Wang Y, Wang G (2006) Salt stress-induced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status. J Plant Physiol 163:731–739

    Article  PubMed  CAS  Google Scholar 

  • Mannella CA (1987) Electron microscopy and image analysis of the mitochondrial outer membrane channel, VDAC. J Bioenerg Biomembr 19:329–340

    Article  PubMed  CAS  Google Scholar 

  • Miernyk JA, Dennis DT (1983) Mitochondrial, plastid, and cytosolic isozymes of hexokinase from developing endosperm of Ricinus communis. Arch Biochem Biophys 226:458–468

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Katagiri H, Ishihara H, Shibasaki Y, Asano T, Toyoda Y, Pekiner B, Pekiner C, Miwa I, Oka Y (1997) Co-localization of glucokinase with actin filaments. FEBS Lett 406:109–113

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Kumagai F (1999) Plant cell biology through the window of the highly synchronized tobacco BY-2 cell line. Methods in Cell Science: 123–127

  • Nilsson A, Olsson T, Ulfstedt M, Thelander M, Ronne H (2011) Two novel types of hexokinases in the moss Physcomitrella patens. BMC Plant Biol 11:32

    Article  PubMed  CAS  Google Scholar 

  • Olivier V, Susana R, Pere M, David B (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal: 949–956

  • Pastorino JG, Hoek JB (2003) Hexokinase II: the integration of energy metabolism and control of apoptosis. Curr Med Chem 10:1535–1551

    Article  PubMed  CAS  Google Scholar 

  • Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40:171–182

    Article  PubMed  CAS  Google Scholar 

  • Petit PX, Lecoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon ML (1995) Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 130:157–167

    Article  PubMed  CAS  Google Scholar 

  • Preller A, Wilson JE (1992) Localization of the type III isozyme of hexokinase at the nuclear periphery. Arch Biochem Biophys 294:482–492

    Article  PubMed  CAS  Google Scholar 

  • Rostovtseva TK, Tan W, Colombini M (2005) On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr 37:129–142

    Article  PubMed  CAS  Google Scholar 

  • Salinas T, Duchene AM, Delage L, Nilsson S, Glaser E, Zaepfel M, Marechal-Drouard L (2006) The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria. Proc Natl Acad Sci U S A 103:18362–18367

    Article  PubMed  CAS  Google Scholar 

  • Schein SJ, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30:99–120

    Article  PubMed  CAS  Google Scholar 

  • Shoshan-Barmatz V, Gincel D (2003) The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys 39:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shoshan-Barmatz V, Keinan N, Abu-Hamad S, Tyomkin D, Aram L (2010) Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo. Biochim Biophys Acta 1797:1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Shoshan-Barmatz V, Zalk R, Gincel D, Vardi N (2004) Subcellular localization of VDAC in mitochondria and ER in the cerebellum. Biochim Biophys Acta 1657:105–114

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Saini N (2012) Downregulation of BCL2 by miRNAs augments drug induced apoptosis: Combined computational and experimental approach. Journal of cell science

  • Tateda C, Yamashita K, Takahashi F, Kusano T, Takahashi Y (2009) Plant voltage-dependent anion channels are involved in host defense against Pseudomonas cichorii and in Bax-induced cell death. Plant Cell Rep 28:41–51

    Article  PubMed  CAS  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Travis AJ, Sui D, Riede KD, Hofmann NR, Moss SB, Wilson JE, Kopf GS (1999) A novel NH2-terminal, nonhydrophobic motif targets a male germ cell-specific hexokinase to the endoplasmic reticulum and plasma membrane. J Biol Chem 274:34467–34475

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2000) VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ 7:1174–1181

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG (2008) Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels? J Exp Bot 59:1963–1972

    Article  PubMed  Google Scholar 

  • Vincent F, Duncton MA (2011) TRPV4 agonists and antagonists. Curr Top Med Chem 11:2216–2226

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gardiner NJ, Fernyhough P (2008) Blockade of hexokinase activity and binding to mitochondria inhibits neurite outgrowth in cultured adult rat sensory neurons. Neurosci Lett 434:6–11

    Article  PubMed  CAS  Google Scholar 

  • Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V (2005) The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 12:751–760

    Article  PubMed  CAS  Google Scholar 

  • Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    Article  PubMed  Google Scholar 

  • Zuppini A, Gerotto C, Baldan B (2010) Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte. Plant Cell Physiol 51:884–895

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Usha VijayRaghavan (Indian Institute of Science, Bangalore, India) for gifting us with OsVDAC4 cDNA. The gift of pBin-NtHxK3-GFP construct from Prof. Uwe Sonnewald is gratefully acknowledged. We thank Dr. Joachim Forner (Molekulare Botanik, Universität Ulm, Germany) for kind gift of eqFP611-pUC19 plasmid. We thank Mr. Anirban Baral for timely help at several instances during the course of the study. AG thanks the Department of Biotechnology for a postdoctoral fellowship. AKD thanks the Indian Council of Medical Research for Senior Research Fellowship. We acknowledge the support of Central Imaging and Flow Facility at NCBS for imaging. This work was supported by internal funds from NCBS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew K. Mathew.

Additional information

Handling Editor: Jaideep Mathur

Ashwini Godbole and Ashvini Kumar Dubey authors contributed equally to this research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godbole, A., Dubey, A.K., Reddy, P.S. et al. Mitochondrial VDAC and hexokinase together modulate plant programmed cell death. Protoplasma 250, 875–884 (2013). https://doi.org/10.1007/s00709-012-0470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0470-y

Keywords

Navigation