Skip to main content

Advertisement

Log in

Lipid glycation and protein glycation in diabetes and atherosclerosis

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recent instrumental analyses using a hybrid quadrupole/linear ion trap spectrometer in LC-MS/MS have demonstrated that the Maillard reaction progresses not only on proteins but also on amino residues of membrane lipids such as phosphatidylethanolamine (PE), thus forming Amadori-PE (deoxy-d-fructosyl PE) as the principal products. The plasma Amadori-PE level is 0.08 mol% of the total PE in healthy subjects and 0.15–0.29 mol% in diabetic patients. Pyridoxal 5′-phosphate and pyridoxal are the most effective lipid glycation inhibitors, and the PE-pyridoxal 5′-phosphate adduct is detectable in human red blood cells. These findings are beneficial for developing a potential clinical marker for glycemic control as well as potential compounds to prevent the pathogenesis of diabetic complications and atherosclerosis. Glucose and other aldehydes, such as glyoxal, methylglyoxal, and glycolaldehyde, react with the amino residues of proteins to form Amadori products and Heynes rearrangement products. Because several advanced glycation end-product (AGE) inhibitors such as pyridoxamine and benfotiamine inhibit the development of retinopathy and neuropathy in streptozotocin (STZ)-induced diabetic rats, AGEs may play a role in the development of diabetic complications. In the present review, we describe the recent progress and future applications of the Maillard reaction research regarding lipid and protein modifications in diabetes and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araki N, Ueno N, Chakrabarti B, Morino Y, Horiuchi S (1992) Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. J Biol Chem 267:10211–10214

    PubMed  CAS  Google Scholar 

  • Asai A, Okajima F, Nakagawa K, Ibusuki D, Tanimura K, Nakajima Y, Nagao M, Sudo M, Harada T, Miyazawa T, Oikawa S (2009) Phosphatidylcholine hydroperoxide-induced THP-1 cell adhesion to intracellular adhesion molecule-1. J Lipid Res 50:957–965

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  PubMed  CAS  Google Scholar 

  • Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H (1993) Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 90:6434–6438

    Article  PubMed  CAS  Google Scholar 

  • Cai W, He JC, Zhu L, Lu C, Vlassara H (2006) Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proc Natl Acad Sci USA 103:13801–13806

    Article  PubMed  CAS  Google Scholar 

  • Hammes HP, Weiss A, Hess S, Araki N, Horiuchi S, Brownlee M, Preissner KT (1996) Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina. Lab Invest J Tech Methods Pathol 75:325–338

    CAS  Google Scholar 

  • Higashi T, Sano H, Saishoji T, Ikeda K, Jinnouchi Y, Kanzaki T, Morisaki N, Rauvala H, Shichiri M, Horiuchi S (1997) The receptor for advanced glycation end products mediates the chemotaxis of rabbit smooth muscle cells. Diabetes 46:463–472

    Article  PubMed  CAS  Google Scholar 

  • Higuchi O, Nakagawa K, Tsuzuki T, Suzuki T, Oikawa S, Miyazawa T (2006) Aminophospholipid glycation and its inhibitor screening system: a new role of pyridoxal 5′-phosphate as the inhibitor. J Lipid Res 47:964–974

    Article  PubMed  CAS  Google Scholar 

  • Houjou T, Yamatani K, Nakanishi H, Imagawa M, Shimizu T, Taguchi R (2004) Rapid and selective identification of molecular species in phosphatidylcholine and sphingomyelin by conditional neutral loss scanning and MS3. Rapid Commun Mass Spectrom 18:3123–3130

    Article  PubMed  CAS  Google Scholar 

  • Hricik DE, Schulak JA, Sell DR, Fogarty JF, Monnier VM (1993) Effects of kidney or kidney-pancreas transplantation on plasma pentosidine. Kidney Int 43:398–403

    Article  PubMed  CAS  Google Scholar 

  • Imai N, Nishi S, Suzuki Y, Karasawa R, Ueno M, Shimada H, Kawashima S, Nakamaru T, Miyakawa Y, Araki N, Horiuchi S, Gejyo F, Arakawa M (1997) Histological localization of advanced glycosylation end products in the progression of diabetic nephropathy. Nephron 76:153–160

    Article  PubMed  CAS  Google Scholar 

  • Jinnouchi Y, Sano H, Nagai R, Hakamata H, Kodama T, Suzuki H, Yoshida M, Ueda S, Horiuchi S (1998) Glycolaldehyde-modified low density lipoprotein leads macrophages to foam cells via the macrophage scavenger receptor. J Biochem 123:1208–1217

    PubMed  CAS  Google Scholar 

  • Kinoshita M, Oikawa S, Hayasaka K, Sekikawa A, Nagashima T, Toyota T, Miyazawa T (2000) Age-related increases in plasma phosphatidylcholine hydroperoxide concentrations in control subjects and patients with hyperlipidemia. Clin Chem 46:822–828

    PubMed  CAS  Google Scholar 

  • Kume S, Takeya M, Mori T, Araki N, Suzuki H, Horiuchi S, Kodama T, Miyauchi Y, Takahashi K (1995) Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Am J Pathol 147:654–667

    PubMed  CAS  Google Scholar 

  • Lertsiri S, Shiraishi M, Miyazawa T (1998) Identification of deoxy-d-fructosyl phosphatidylethanolamine as a non-enzymic glycation product of phosphatidylethanolamine and its occurrence in human blood plasma and red blood cells. Biosci Biotechnol Biochem 62:893–901

    Article  PubMed  CAS  Google Scholar 

  • Mera K, Nagai R, Haraguchi N, Fujiwara Y, Araki T, Sakata N, Otagiri M (2007) Hypochlorous acid generates N epsilon-(carboxymethyl)lysine from Amadori products. Free Radic Res 41:713–718

    Article  PubMed  CAS  Google Scholar 

  • Mera K, Takeo K, Izumi M, Maruyama T, Nagai R, Otagiri M (2010) Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin. J Pharm Sci 99:1614–1625

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Oda O, Inagi R, Iida Y, Araki N, Yamada N, Horiuchi S, Taniguchi N, Maeda K, Kinoshita T (1993) beta 2-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest 92:1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Taneda S, Kawai R, Ueda Y, Horiuchi S, Hara M, Maeda K, Monnier VM (1996) Identification of pentosidine as a native structure for advanced glycation end products in beta-2-microglobulin-containing amyloid fibrils in patients with dialysis-related amyloidosis. Proc Natl Acad Sci USA 93:2353–2358

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa T (1989) Determination of phospholipid hydroperoxides in human blood plasma by a chemiluminescence-HPLC assay. Free Radic Biol Med 7:209–217

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa T, Suzuki T, Fujimoto K, Yasuda K (1992) Chemiluminescent simultaneous determination of phosphatidylcholine hydroperoxide and phosphatidylethanolamine hydroperoxide in the liver and brain of the rat. J Lipid Res 33:1051–1059

    PubMed  CAS  Google Scholar 

  • Nagai R, Ikeda K, Higashi T, Sano H, Jinnouchi Y, Araki T, Horiuchi S (1997) Hydroxyl radical mediates N epsilon-(carboxymethyl)lysine formation from Amadori product. Biochem Biophys Res Commun 234:167–172

    Article  PubMed  CAS  Google Scholar 

  • Nagai R, Matsumoto K, Ling X, Suzuki H, Araki T, Horiuchi S (2000) Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes 49:1714–1723

    Article  PubMed  CAS  Google Scholar 

  • Nagai R, Unno Y, Hayashi MC, Masuda S, Hayase F, Kinae N, Horiuchi S (2002) Peroxynitrite induces formation of N(epsilon)-(carboxymethyl) lysine by the cleavage of Amadori product and generation of glucosone and glyoxal from glucose: novel pathways for protein modification by peroxynitrite. Diabetes 51:2833–2839

    Article  PubMed  CAS  Google Scholar 

  • Nagai R, Mera K, Nakajou K, Fujiwara Y, Iwao Y, Imai H, Murata T, Otagiri M (2007) The ligand activity of AGE-proteins to scavenger receptors is dependent on their rate of modification by AGEs. Biochim Biophys Acta 1772:1192–1198

    PubMed  CAS  Google Scholar 

  • Nagashima T, Oikawa S, Hirayama Y, Tokita Y, Sekikawa A, Ishigaki Y, Yamada R, Miyazawa T (2002) Increase of serum phosphatidylcholine hydroperoxide dependent on glycemic control in type 2 diabetic patients. Diabetes Res Clin Pract 56:19–25

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa K, Oak JH, Higuchi O, Tsuzuki T, Oikawa S, Otani H, Mune M, Cai H, Miyazawa T (2005) Ion-trap tandem mass spectrometric analysis of Amadori-glycated phosphatidylethanolamine in human plasma with or without diabetes. J Lipid Res 46:2514–2524

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  PubMed  CAS  Google Scholar 

  • Oak J, Nakagawa K, Miyazawa T (2000) Synthetically prepared Aamadori-glycated phosphatidylethanolaminecan trigger lipid peroxidation via free radical reactions. FEBS Lett 481:26–30

    Article  PubMed  CAS  Google Scholar 

  • Oak JH, Nakagawa K, Miyazawa T (2002) UV analysis of Amadori-glycated phosphatidylethanolamine in foods and biological samples. J Lipid Res 43:523–529

    PubMed  CAS  Google Scholar 

  • Oak JH, Nakagawa K, Oikawa S, Miyazawa T (2003) Amadori-glycated phosphatidylethanolamine induces angiogenic differentiations in cultured human umbilical vein endothelial cells. FEBS Lett 555:419–423

    Article  PubMed  CAS  Google Scholar 

  • Odetti P, Fogarty J, Sell DR, Monnier VM (1992) Chromatographic quantitation of plasma and erythrocyte pentosidine in diabetic and uremic subjects. Diabetes 41:153–159

    Article  PubMed  CAS  Google Scholar 

  • Ravandi A, Kuksis A, Marai L, Myher JJ (1995) Preparation and characterization of glucosylated aminoglycerophospholipids. Lipids 30:885–891

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M et al (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267:14987–14997

    PubMed  CAS  Google Scholar 

  • Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96:1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Sell DR, Monnier VM (1989) Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem 264:21597–21602

    PubMed  CAS  Google Scholar 

  • Shoji N, Nakagawa K, Asai A, Fujita I, Hashiura A, Nakajima Y, Oikawa S, Miyazawa T (2010) LC-MS/MS analysis of carboxymethylated and carboxyethylated phosphatidylethanolamines in human erythrocytes and blood plasma. J Lipid Res 51(8):2445–2453 (in press)

    Google Scholar 

  • Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, Stern D, Sayre LM, Monnier VM, Perry G (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 91:5710–5714

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Yamagishi S (2004) Alternative routes for the formation of glyceraldehyde-derived AGEs (TAGE) in vivo. Med Hypotheses 63:453–455

    Article  PubMed  CAS  Google Scholar 

  • Taneda S, Monnier VM (1994) ELISA of pentosidine, an advanced glycation end product, in biological specimens. Clin Chem 40:1766–1773

    PubMed  CAS  Google Scholar 

  • Thornalley PJ, Argirova M, Ahmed N, Mann VM, Argirov O, Dawnay A (2000) Mass spectrometric monitoring of albumin in uremia. Kidney Int 58:2228–2234

    Article  PubMed  CAS  Google Scholar 

  • Tokita Y, Hirayama Y, Sekikawa A, Kotake H, Toyota T, Miyazawa T, Sawai T, Oikawa S (2005) Fructose ingestion enhances atherosclerosis and deposition of advanced glycated end-products in cholesterol-fed rabbits. J Atheroscler Thromb 12:260–267

    Article  PubMed  CAS  Google Scholar 

  • Utzmann CM, Lederer MO (2000) Identification and quantification of aminophospholipid-linked Maillard compounds in model systems and egg yolk products. J Agric Food Chem 48:1000–1008

    Article  PubMed  CAS  Google Scholar 

  • Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R (1992) Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci USA 89:12043–12047

    Article  PubMed  CAS  Google Scholar 

  • Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Miyahara Y, Hamaguchi K, Nakayama M, Nakano H, Nozaki O, Miura Y, Suzuki S, Tuchida H, Mimura N et al (1994) Immunohistochemical study of human advanced glycosylation end-products (AGE) in chronic renal failure. Clin Nephrol 42:354–361

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for scientific Research (No. 21590340 to Ryoji Nagai and No. 20228002 to Teruo Miyazawa) from the Ministry of Education, Science, Sports and Cultures of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Miyazawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazawa, T., Nakagawa, K., Shimasaki, S. et al. Lipid glycation and protein glycation in diabetes and atherosclerosis. Amino Acids 42, 1163–1170 (2012). https://doi.org/10.1007/s00726-010-0772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0772-3

Keywords

Navigation