Skip to main content

Advertisement

Log in

The oxidative stress-inducible cystine/glutamate antiporter, system x c : cystine supplier and beyond

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The oxidative stress-inducible cystine/glutamate exchange system, system x c , transports one molecule of cystine, the oxidized form of cysteine, into cells and thereby releases one molecule of glutamate into the extracellular space. It consists of two protein components, the 4F2 heavy chain, necessary for membrane location of the heterodimer, and the xCT protein, responsible for transport activity. Previously, system x c has been regarded to be a mere supplier of cysteine to cells for the synthesis of proteins and the antioxidant glutathione (GSH). In that sense, oxygen, electrophilic agents, and bacterial lipopolysaccharide trigger xCT expression to accommodate with increased oxidative stress by stimulating GSH biosynthesis. However, emerging evidence established that system x c may act on its own as a GSH-independent redox system by sustaining a redox cycle over the plasma membrane. Hallmarks of this cycle are cystine uptake, intracellular reduction to cysteine and secretion of the surplus of cysteine into the extracellular space. Consequently, increased levels of extracellular cysteine provide a reducing microenvironment required for proper cell signaling and communication, e.g. as already shown for the mechanism of T cell activation. By contrast, the enhanced release of glutamate in exchange with cystine may trigger neurodegeneration due to glutamate-induced cytotoxic processes. This review aims to provide a comprehensive picture from the early days of system x c research up to now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  • Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A (2010) Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system x(c)− as a neuroprotective drug target. CNS Neurol Disord Drug Targets 9:373–382

    PubMed  CAS  Google Scholar 

  • Anderson CL, Iyer SS, Ziegler TR, Jones DP (2007) Control of extracellular cysteine/cystine redox state by HT-29 cells is independent of cellular glutathione. Am J Physiol Regul Integr Comp Physiol 293:R1069–R1075

    Article  PubMed  CAS  Google Scholar 

  • Angelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G, Clarke F, Sitia R, Rubartelli A (2002) Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci USA 99:1491–1496

    Article  PubMed  CAS  Google Scholar 

  • Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA (2006) Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 9:119–126

    Article  PubMed  CAS  Google Scholar 

  • Aoyama K, Watabe M, Nakaki T (2011) Modulation of neuronal glutathione synthesis by EAAC1 and its interacting protein GTRAP3-18. Amino Acids (this issue)

  • Banjac A, Perisic T, Sato H, Seiler A, Bannai S, Weiss N, Kolle P, Tschoep K, Issels RD, Daniel PT et al (2008) The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death. Oncogene 27:1618–1628

    Article  PubMed  CAS  Google Scholar 

  • Bannai S (1984a) Induction of cystine and glutamate transport activity in human fibroblasts by diethyl maleate and other electrophilic agents. J Biol Chem 259:2435–2440

    PubMed  CAS  Google Scholar 

  • Bannai S (1984b) Transport of cystine and cysteine in mammalian cells. Biochim Biophys Acta 779:289–306

    PubMed  CAS  Google Scholar 

  • Bannai S (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263

    PubMed  CAS  Google Scholar 

  • Bannai S, Kitamura E (1980) Transport interaction of l--cystine and l--glutamate in human diploid fibroblasts in culture. J Biol Chem 255:2372–2376

    PubMed  CAS  Google Scholar 

  • Bannai S, Kitamura E (1981) Role of proton dissociation in the transport of cystine and glutamate in human diploid fibroblasts in culture. J Biol Chem 256:5770–5772

    PubMed  CAS  Google Scholar 

  • Bannai S, Kitamura E (1982) Adaptive enhancement of cystine and glutamate uptake in human diploid fibroblasts in culture. Biochim Biophys Acta 721:1–10

    Article  PubMed  CAS  Google Scholar 

  • Bannai S, Tateishi N (1986) Role of membrane transport in metabolism and function of glutathione in mammals. J Membr Biol 89:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bannai S, Christensen HN, Vadgama JV, Ellory JC, Englesberg E, Guidotti GG, Gazzola GC, Kilberg MS, Lajtha A, Sacktor B et al (1984) Amino acid transport systems. Nature 311:308

    PubMed  CAS  Google Scholar 

  • Bannai S, Sato H, Ishii T, Sugita Y (1989) Induction of cystine transport activity in human fibroblasts by oxygen. J Biol Chem 264:18480–18484

    PubMed  CAS  Google Scholar 

  • Bannai S, Sato H, Ishii T, Taketani S (1991) Enhancement of glutathione levels in mouse peritoneal macrophages by sodium arsenite, cadmium chloride and glucose/glucose oxidase. Biochim Biophys Acta 1092:175–179

    Article  PubMed  CAS  Google Scholar 

  • Barbosa-Tessmann IP, Chen C, Zhong C, Siu F, Schuster SM, Nick HS, Kilberg MS (2000) Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem 275:26976–26985

    PubMed  CAS  Google Scholar 

  • Bjorkhem-Bergman L, Jonsson K, Eriksson LC, Olsson JM, Lehmann S, Paul C, Bjornstedt M (2002) Drug-resistant human lung cancer cells are more sensitive to selenium cytotoxicity. Effects on thioredoxin reductase and glutathione reductase. Biochem Pharmacol 63:1875–1884

    Article  PubMed  CAS  Google Scholar 

  • Blakytny R, Erkell LJ, Brunner G (2006) Inactivation of active and latent transforming growth factor beta by free thiols: potential redox regulation of biological action. Int J Biochem Cell Biol 38:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Bridges CC, Hu H, Miyauchi S, Siddaramappa UN, Ganapathy ME, Ignatowicz L, Maddox DM, Smith SB, Ganapathy V (2004) Induction of cystine-glutamate transporter xc− by human immunodeficiency virus type 1 transactivator protein tat in retinal pigment epithelium. Invest Ophthalmol Vis Sci 45:2906–2914

    Article  PubMed  Google Scholar 

  • Brielmeier M, Bechet JM, Falk MH, Pawlita M, Polack A, Bornkamm GW (1998) Improving stable transfection efficiency: antioxidants dramatically improve the outgrowth of clones under dominant marker selection. Nucleic Acids Res 26:2082–2085

    Article  PubMed  CAS  Google Scholar 

  • Bruhat A, Jousse C, Carraro V, Reimold AM, Ferrara M, Fafournoux P (2000) Amino acids control mammalian gene transcription: activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol Cell Biol 20:7192–7204

    Article  PubMed  CAS  Google Scholar 

  • Castellani P, Angelini G, Delfino L, Matucci A, Rubartelli A (2008) The thiol redox state of lymphoid organs is modified by immunization: role of different immune cell populations. Eur J Immunol 38:2419–2425

    Article  PubMed  CAS  Google Scholar 

  • Chairoungdua A, Segawa H, Kim JY, Miyamoto K, Haga H, Fukui Y, Mizoguchi K, Ito H, Takeda E, Endou H et al (1999) Identification of an amino acid transporter associated with the cystinuria-related type II membrane glycoprotein. J Biol Chem 274:28845–28848

    Article  PubMed  CAS  Google Scholar 

  • Chen RS, Song YM, Zhou ZY, Tong T, Li Y, Fu M, Guo XL, Dong LJ, He X, Qiao HX et al (2009) Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/beta-catenin pathway. Oncogene 28:599–609

    Article  PubMed  CAS  Google Scholar 

  • Chintala S, Li W, Lamoreux ML, Ito S, Wakamatsu K, Sviderskaya EV, Bennett DC, Park YM, Gahl WA, Huizing M et al (2005) Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc Natl Acad Sci USA 102:10964–10969

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Bannai S (1990) Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55:2091–2097

    Article  PubMed  CAS  Google Scholar 

  • Chung WJ, Lyons SA, Nelson GM, Hamza H, Gladson CL, Gillespie GY, Sontheimer H (2005) Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci 25:7101–7110

    Article  PubMed  CAS  Google Scholar 

  • Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891

    Article  PubMed  CAS  Google Scholar 

  • Conrad M (2009) Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione peroxidase 4. Biochim Biophys Acta 1790:1575–1585

    Article  PubMed  CAS  Google Scholar 

  • Deibel RMB, Chedekel MR (1984) Biosynthetic and strcutural Studies on Pheomelanin. J Am Chem Soc 106:5884–5888

    Article  CAS  Google Scholar 

  • Droge W, Eck HP, Gmunder H, Mihm S (1991) Modulation of lymphocyte functions and immune responses by cysteine and cysteine derivatives. Am J Med 91:140S–144S

    Article  PubMed  CAS  Google Scholar 

  • Falk MH, Meier T, Issels RD, Brielmeier M, Scheffer B, Bornkamm GW (1998) Apoptosis in Burkitt lymphoma cells is prevented by promotion of cysteine uptake. Int J Cancer 75:620–625

    Article  PubMed  CAS  Google Scholar 

  • Feliubadalo L, Font M, Purroy J, Rousaud F, Estivill X, Nunes V, Golomb E, Centola M, Aksentijevich I, Kreiss Y et al (1999) Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo, +AT) of rBAT. Nat Genet 23:52–57

    PubMed  CAS  Google Scholar 

  • Fogal B, Li J, Lobner D, McCullough LD, Hewett SJ (2007) System x(c)− activity and astrocytes are necessary for interleukin-1 beta-mediated hypoxic neuronal injury. J Neurosci 27:10094–10105

    Article  PubMed  CAS  Google Scholar 

  • Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121:29–40

    Article  PubMed  CAS  Google Scholar 

  • Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R, Lechler RI (2007) Galectin-1: a key effector of regulation mediated by CD4+ CD25+ T cells. Blood 109:2058–2065

    Article  PubMed  CAS  Google Scholar 

  • Gasol E, Jimenez-Vidal M, Chillaron J, Zorzano A, Palacin M (2004) Membrane topology of system xc− light subunit reveals a re-entrant loop with substrate-restricted accessibility. J Biol Chem 279:31228–31236

    Article  PubMed  CAS  Google Scholar 

  • Gmunder H, Eck HP, Benninghoff B, Roth S, Droge W (1990) Macrophages regulate intracellular glutathione levels of lymphocytes. Evidence for an immunoregulatory role of cysteine. Cell Immunol 129:32–46

    Article  PubMed  CAS  Google Scholar 

  • Go YM, Jones DP (2005) Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state. Circulation 111:2973–2980

    Article  PubMed  CAS  Google Scholar 

  • Gras G, Samah B, Hubert A et al. (2011) EEAT expression by macrophages and microglia: still more question than answers. Amino Acids (this issue)

  • Guan J, Lo M, Dockery P, Mahon S, Karp CM, Buckley AR, Lam S, Gout PW, Wang YZ (2009) The xc− cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of sulfasalazine. Cancer Chemother Pharmacol 64:463–472

    Article  PubMed  CAS  Google Scholar 

  • Had-Aissouni L (2011a) Maintenance of antioxidant defenses of brain cells: plasma membrane glutamate transporters and beyond. Amino Acids, this issue

    Google Scholar 

  • Had-Aissouni L (2011b) Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance. Amino Acids, this issue

    Google Scholar 

  • Hayes D, Wiessner M, Rauen T et al (2005) Transport of l-[14C]cystine and l-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells. Neurochem Int 46:585–594

    Article  PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Dai Z, Barbacioru C, Sadee W (2005) Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res 65:7446–7454

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Bannai S, Sugita Y (1981a) Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J Biol Chem 256:12387–12392

    PubMed  CAS  Google Scholar 

  • Ishii T, Hishinuma I, Bannai S, Sugita Y (1981b) Mechanism of growth promotion of mouse lymphoma L1210 cells in vitro by feeder layer or 2-mercaptoethanol. J Cell Physiol 107:283–293

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Sugita Y, Bannai S (1987) Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. J Cell Physiol 133:330–336

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Nakayama K, Sato H, Miura K, Yamada M, Yamada K, Sugita Y, Bannai S (1991) Expression of the mouse macrophage cystine transporter in Xenopus laevis oocytes. Arch Biochem Biophys 289:71–75

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023–16029

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208–1213

    Article  PubMed  CAS  Google Scholar 

  • Iuchi Y, Kibe N, Tsunoda S, Okada F, Bannai S, Sato H, Fujii J (2008) Deficiency of the cystine-transporter gene, xCT, does not exacerbate the deleterious phenotypic consequences of SOD1 knockout in mice. Mol Cell Biochem 319:125–132

    Article  PubMed  CAS  Google Scholar 

  • Iyer SS, Jones DP, Brigham KL, Rojas M (2009a) Oxidation of plasma cysteine/cystine redox state in endotoxin-induced lung injury. Am J Respir Cell Mol Biol 40:90–98

    Article  PubMed  CAS  Google Scholar 

  • Iyer SS, Ramirez AM, Ritzenthaler JD, Torres-Gonzalez E, Roser-Page S, Mora AL, Brigham KL, Jones DP, Roman J, Rojas M (2009b) Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis. Am J Physiol Lung Cell Mol Physiol 296:L37–L45

    Article  PubMed  CAS  Google Scholar 

  • Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade JM Jr, Kirlin WG (2004) Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. Faseb J 18:1246–1248

    PubMed  CAS  Google Scholar 

  • Kaleeba JA, Berger EA (2006) Kaposi’s sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science 311:1921–1924

    Article  PubMed  CAS  Google Scholar 

  • Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29:21–32

    Article  PubMed  CAS  Google Scholar 

  • Lewerenz J, Klein M, Methner A (2006) Cooperative action of glutamate transporters and cystine/glutamate antiporter system Xc− protects from oxidative glutamate toxicity. J Neurochem 98:916–925

    Article  PubMed  CAS  Google Scholar 

  • Lewerenz J, Maher P, Methner A (2011) Regulation of xCT expression and system xc− function in neuronal cells. Amino Acids (this issue)

  • Li S, Whorton AR (2005) Identification of stereoselective transporters for S-nitroso-l-cysteine: role of LAT1 and LAT2 in biological activity of S-nitrosothiols. J Biol Chem 280:20102–20110

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Maher P, Schubert D (1997) A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463

    Article  PubMed  CAS  Google Scholar 

  • Lillig CH, Holmgren A (2007) Thioredoxin and related molecules—from biology to health and disease. Antioxid Redox Signal 9:25–47

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  • Lo M, Ling V, Wang YZ, Gout PW (2008a) The xc− cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br J Cancer 99:464–472

    Article  PubMed  CAS  Google Scholar 

  • Lo M, Wang YZ, Gout PW (2008b) The x(c)− cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215:593–602

    Article  PubMed  CAS  Google Scholar 

  • Loscalzo J (2008) Membrane redox state and apoptosis: death by peroxide. Cell Metab 8:182–183

    Article  PubMed  CAS  Google Scholar 

  • Mandal PK, Seiler A, Perisic T, Koelle P, Banjac Canak A, Foester H, Weiss N, Kremmer E, Lieberman MW, Bannai S et al (2010) System xc− and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem 285:22244–22253

    Article  PubMed  CAS  Google Scholar 

  • Massie A, Schallier A, Kim SW, Fernando R, Kobayashi S, Beck H, De Bundel DD, Vermoessen K, Bannai S, Smolders I, et al. (2010) Dopaminergic neurons of system xc− deficient mice are highly protected against 6-hydroxydopamine-induced toxicity. Faseb J. doi:10.1096/fj.10-177212

  • McBean G (2011) The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids (this issue)

  • Miyata M, Smith JD (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 14:55–61

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Schnaar RL, Coyle JT (1990) Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. Faseb J 4:1624–1633

    PubMed  CAS  Google Scholar 

  • Nabeyama A, Kurita A, Asano K, Miyake Y, Yasuda T, Miura I, Nishitai G, Arakawa S, Shimizu S, Wakana S et al (2010) xCT deficiency accelerates chemically induced tumorigenesis. Proc Natl Acad Sci USA 107:6436–6441

    Article  PubMed  CAS  Google Scholar 

  • Okuno S, Sato H, Kuriyama-Matsumura K, Tamba M, Wang H, Sohda S, Hamada H, Yoshikawa H, Kondo T, Bannai S (2003) Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br J Cancer 88:951–956

    Article  PubMed  CAS  Google Scholar 

  • Olm E, Fernandes AP, Hebert C, Rundlof AK, Larsen EH, Danielsson O, Bjornstedt M (2009) Extracellular thiol-assisted selenium uptake dependent on the x(c)− cystine transporter explains the cancer-specific cytotoxicity of selenite. Proc Natl Acad Sci USA 106:11400–11405

    Article  PubMed  CAS  Google Scholar 

  • Patel SA, Warren BA, Rhoderick JF, Bridges RJ (2004) Differentiation of substrate and non-substrate inhibitors of transport system xc(−): an obligate exchanger of l-glutamate and l-cystine. Neuropharmacology 46:273–284

    Article  PubMed  CAS  Google Scholar 

  • Persson M, Rönnbäck L (2011) Microglial self defence mediated through GLT-1 and glutathione. Amino Acids (this issue)

  • Pfeiffer R, Loffing J, Rossier G, Bauch C, Meier C, Eggermann T, Loffing-Cueni D, Kuhn LC, Verrey F (1999) Luminal heterodimeric amino acid transporter defective in cystinuria. Mol Biol Cell 10:4135–4147

    PubMed  CAS  Google Scholar 

  • Qiao HX, Hao CJ, Li Y, He X, Chen RS, Cui J, Xu ZH, Li W (2008) JNK activation mediates the apoptosis of xCT-deficient cells. Biochem Biophys Res Commun 370:584–588

    Article  PubMed  CAS  Google Scholar 

  • Qin S, Colin C, Hinners I, Gervais A, Cheret C, Mallat M (2006) System Xc− and apolipoprotein E expressed by microglia have opposite effects on the neurotoxicity of amyloid-beta peptide 1–40. J Neurosci 26:3345–3356

    Article  PubMed  CAS  Google Scholar 

  • Rajan DP, Kekuda R, Huang W, Wang H, Devoe LD, Leibach FH, Prasad PD, Ganapathy V (1999) Cloning and expression of a b(0,+)-like amino acid transporter functioning as a heterodimer with 4F2hc instead of rBAT. A new candidate gene for cystinuria. J Biol Chem 274:29005–29010

    Article  PubMed  CAS  Google Scholar 

  • Robe PA, Martin D, Albert A, Deprez M, Chariot A, Bours V (2006) A phase 1–2, prospective, double blind, randomized study of the safety and efficacy of Sulfasalazine for the treatment of progressing malignant gliomas: study protocol of [ISRCTN45828668]. BMC Cancer 6:29

    Article  PubMed  CAS  Google Scholar 

  • Robe PA, Martin DH, Nguyen-Khac MT, Artesi M, Deprez M, Albert A, Vanbelle S, Califice S, Bredel M, Bours V (2009) Early termination of ISRCTN45828668, a phase 1/2 prospective, randomized study of sulfasalazine for the treatment of progressing malignant gliomas in adults. BMC Cancer 9:372

    Article  PubMed  CAS  Google Scholar 

  • Rubartelli A, Sitia R (2009) Chemo-metabolic regulation of immune responses by Tregs. Nat Chem Biol 5:709–710

    Article  PubMed  CAS  Google Scholar 

  • Sakakura Y, Sato H, Shiiya A, Tamba M, Sagara J, Matsuda M, Okamura N, Makino N, Bannai S (2007) Expression and function of cystine/glutamate transporter in neutrophils. J Leukoc Biol 81:974–982

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M, Bannai S (2002) Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277:44765–44771

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Fujiwara K, Sagara J, Bannai S (1995a) Induction of cystine transport activity in mouse peritoneal macrophages by bacterial lipopolysaccharide. Biochem J 310:547–551

    PubMed  CAS  Google Scholar 

  • Sato H, Takenaka Y, Fujiwara K, Yamaguchi M, Abe K, Bannai S (1995b) Increase in cystine transport activity and glutathione level in mouse peritoneal macrophages exposed to oxidized low-density lipoprotein. Biochem Biophys Res Commun 215:154–159

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Tamba M, Kuriyama-Matsumura K, Okuno S, Bannai S (2000) Molecular cloning and expression of human xCT, the light chain of amino acid transport system xc−. Antioxid Redox Signal 2:665–671

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Kuriyama-Matsumura K, Hashimoto T, Sasaki H, Wang H, Ishii T, Mann GE, Bannai S (2001) Effect of oxygen on induction of the cystine transporter by bacterial lipopolysaccharide in mouse peritoneal macrophages. J Biol Chem 276:10407–10412

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Tamba M, Okuno S, Sato K, Keino-Masu K, Masu M, Bannai S (2002) Distribution of cystine/glutamate exchange transporter, system x(c)−, in the mouse brain. J Neurosci 22:8028–8033

    PubMed  CAS  Google Scholar 

  • Sato H, Nomura S, Maebara K, Sato K, Tamba M, Bannai S (2004) Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. Biochem Biophys Res Commun 325:109–116

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T et al (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280:37423–37429

    Article  PubMed  CAS  Google Scholar 

  • Savaskan NE, Heckel A, Hahnen E, Engelhorn T, Doerfler A, Ganslandt O, Nimsky C, Buchfelder M, Eyupoglu IY (2008) Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat Med 14:629–632

    Article  PubMed  CAS  Google Scholar 

  • Schubert D, Kimura H, Maher P (1992) Growth factors and vitamin E modify neuronal glutamate toxicity. Proc Natl Acad Sci USA 89:8264–8267

    Article  PubMed  CAS  Google Scholar 

  • Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176

    Article  PubMed  CAS  Google Scholar 

  • Seiler A, Schneider M, Forster H, Roth S, Wirth EK, Culmsee C, Plesnila N, Kremmer E, Radmark O, Wurst W et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:237–248

    Article  PubMed  CAS  Google Scholar 

  • Shi ZZ, Osei-Frimpong J, Kala G, Kala SV, Barrios RJ, Habib GM, Lukin DJ, Danney CM, Matzuk MM, Lieberman MW (2000) Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci USA 97:5101–5106

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki T, Iuchi Y, Okada F, Kuwata K, Yamanobe T, Bannai S, Tomita Y, Sato H, Fujii J (2009) Aggravation of ischemia-reperfusion-triggered acute renal failure in xCT-deficient mice. Arch Biochem Biophys 490:63–69

    Article  PubMed  CAS  Google Scholar 

  • Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26:10514–10523

    Article  PubMed  CAS  Google Scholar 

  • Sims B, Clarke M, Njah W, Hopkins ES, Sontheimer H (2010) Erythropoietin-induced neuroprotection requires cystine glutamate exchanger activity. Brain Res 1321:88–95

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer H (2003) Malignant gliomas: perverting glutamate and ion homeostasis for selective advantage. Trends Neurosci 26:543–549

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer H (2008) A role for glutamate in growth and invasion of primary brain tumors. J Neurochem 105:287–295

    Article  PubMed  CAS  Google Scholar 

  • Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77

    Article  PubMed  CAS  Google Scholar 

  • Taguchi K, Tamba M, Bannai S, Sato H (2007) Induction of cystine/glutamate transporter in bacterial lipopolysaccharide induced endotoxemia in mice. J Inflamm Lond 4:20

    Article  PubMed  CAS  Google Scholar 

  • Takada A, Bannai S (1984) Transport of cystine in isolated rat hepatocytes in primary culture. J Biol Chem 259:2441–2445

    PubMed  CAS  Google Scholar 

  • Tassi S, Carta S, Vene R, Delfino L, Ciriolo MR, Rubartelli A (2009) Pathogen-induced interleukin-1beta processing and secretion is regulated by a biphasic redox response. J Immunol 183:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C (2011) Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ 18:282–292

    Article  PubMed  CAS  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  PubMed  CAS  Google Scholar 

  • van Leyen K, Kim HY, Lee SR, Jin G, Arai K, Lo EH (2006) Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke 37:3014–3018

    Article  PubMed  CAS  Google Scholar 

  • Van Winkle LJ, Campione AL, Gorman JM (1988) Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J Biol Chem 263:3150–3163

    PubMed  Google Scholar 

  • Vene R, Delfino L, Castellani P, Balza E, Bertolotti M, Sitia R, Rubartelli A (2010) Redox remodeling allows and controls B cell activation and differentiation. Antioxid Redox Signal 13:1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y (2004) CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 447:532–542

    Article  PubMed  CAS  Google Scholar 

  • Wagner CA, Lang F, Broer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 281:C1077–C1093

    PubMed  CAS  Google Scholar 

  • Watanabe H, Bannai S (1987) Induction of cystine transport activity in mouse peritoneal macrophages. J Exp Med 165:628–640

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Garg SK, Kipnis J, Banerjee R (2009) Extracellular redox modulation by regulatory T cells. Nat Chem Biol 5:721–723

    Article  PubMed  CAS  Google Scholar 

  • Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391

    PubMed  CAS  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Interaction of l-cysteine with a human excitatory amino acid transporter. J Physiol 493:419–423

    PubMed  CAS  Google Scholar 

  • Zhu J, Li S, Marshall ZM, Whorton AR (2008) A cystine-cysteine shuttle mediated by xCT facilitates cellular responses to S-nitrosoalbumin. Am J Physiol Cell Physiol 294:C1012–C1020

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Bannai for critically reading the manuscript. The work was supported by the Deutsche Forschungsgemeinschaft (DFG) (CO 291/2-2), the DFG-Priority Programme SPP1190 to MC, a JSPS Japan and Germany Bilateral Joint Research Project and a Grant-in-aid for scientific research to HS and a JSPS travel fellowship to MC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcus Conrad or Hideyo Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, M., Sato, H. The oxidative stress-inducible cystine/glutamate antiporter, system x c : cystine supplier and beyond. Amino Acids 42, 231–246 (2012). https://doi.org/10.1007/s00726-011-0867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0867-5

Keywords

Navigation