Skip to main content

Advertisement

Log in

Neurophysiological assessment of brain dysfunction in critically ill patients: an update

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The aim of this review was to provide up-to-date information about the usefulness of clinical neurophysiology testing in the management of critically ill patients. Evoked potentials (EPs) and electroencephalogram (EEG) are non-invasive clinical neurophysiology tools that allow an objective assessment of the central nervous system’s function at the bedside in intensive care unit (ICU). These tests are quite useful in diagnosing cerebral complications, and establishing the vital and functional prognosis in ICU. EEG keeps a particularly privileged importance in detecting seizures phenomena such as subclinical seizures and non-convulsive status epilepticus. Quantitative EEG (QEEG) analysis techniques commonly called EEG Brain mapping can provide obvious topographic displays of digital EEG signals characteristics, showing the potential distribution over the entire scalp including filtering, frequency, and amplitude analysis and color mapping. Evidences of usefulness of QEEG for seizures detection in ICU are provided by several recent studies. Furthermore, beyond detection of epileptic phenomena, changes of some QEEG panels are early warning indicators of sedation level as well as brain damage or dysfunction in ICU. EPs offer the opportunity for assessing brainstem’s functional integrity, as well as subcortical and cortical brain areas. A multimodal use, combining EEG and various modalities of EPs is recommended since this allows a more accurate functional exploration of the brain and helps caregivers to tailor therapeutic measures according to neurological worsening trends and to anticipate the prognosis in ICU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Electroencephalographic Society Guidelines in Electroencephalography (1994) Evoked potentials, and polysomnography. J Clin Neurophysiol 11:1–147

    Article  Google Scholar 

  2. Guerit JM, Amantini A, Amodio P, Andersen KV, Butler S et al (2009) Consensus on the use of neurophysiological tests in the intensive care unit (ICU): electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG). Neurophysiol Clin 39:71–83

    Article  PubMed  Google Scholar 

  3. Kull LL, Emerson RG (2005) Continuous EEG monitoring in the intensive care unit: technical and staffing considerations. J Clin Neurophysiol 22:107–118

    Article  PubMed  Google Scholar 

  4. Hirsch LJ, Kull LL (2004) Continuous EEG monitoring in the intensive care unit. Am J Electroneurodiagnostic Technol 44:137–158

    PubMed  Google Scholar 

  5. Fischer C (1997) The use of EEG in the diagnosis of brain death in France. Neurophysiol Clin 27:373–382

    Article  CAS  PubMed  Google Scholar 

  6. Guerit JM (1992) Evoked potentials: a safe brain-death confirmatory tool? Eur J Med 1:233–243

    CAS  PubMed  Google Scholar 

  7. Guerit JM (2004) The concept of brain death. Adv Exp Med Biol 550:15–21

    Article  PubMed  Google Scholar 

  8. Guerit JM (2007) Electroencephalography: the worst traditionally recommended tool for brain death confirmation. Intensive Care Med 33:9–10

    Article  PubMed  Google Scholar 

  9. Hantson P, de Tourtchaninoff M, Guerit JM, Vanormelingen P, Mahieu P (1997) Multimodality evoked potentials as a valuable technique for brain death diagnosis in poisoned patients. Transplant Proc 29:3345–3346

    Article  CAS  PubMed  Google Scholar 

  10. Claassen J, Taccone FS, Horn P, Holtkamp M, Stocchetti N et al (2013) Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med 39:1337–1351

    Article  CAS  PubMed  Google Scholar 

  11. Freye E (2005) Cerebral Monitoring in the Operating Room and the Intensive Care Unit: an introductory for the clinician and a guide for the novice wanting to open a window to the brain. Part III: Spinal cord evoked potentials. J Clin Monit Comput 19:169–178

    Article  PubMed  Google Scholar 

  12. Rossetti AO, Reichhart MD, Schaller MD, Despland PA, Bogousslavsky J (2004) Propofol treatment of refractory status epilepticus: a study of 31 episodes. Epilepsia 45:757–763

    Article  CAS  PubMed  Google Scholar 

  13. Stocchetti N, Le Roux P, Vespa P, Oddo M, Citerio G et al (2013) Clinical review: neuromonitoring—an update. Crit Care 17:201

    Article  PubMed  PubMed Central  Google Scholar 

  14. Swisher CB, Sinha SR (2016) Utilization of quantitative EEG trends for critical care continuous EEG monitoring: a survey of neurophysiologists. J Clin Neurophysiol 33:538–544

    Article  PubMed  Google Scholar 

  15. Swisher CB, White CR, Mace BE, Dombrowski KE, Husain AM et al (2015) Diagnostic accuracy of electrographic seizure detection by neurophysiologists and non-neurophysiologists in the adult ICU using a panel of quantitative EEG trends. J Clin Neurophysiol 32:324–330

    Article  PubMed  Google Scholar 

  16. Dericioglu N, Yetim E, Bas DF, Bilgen N, Caglar G et al (2015) Non-expert use of quantitative EEG displays for seizure identification in the adult neuro-intensive care unit. Epilepsy Res 109:48–56

    Article  PubMed  Google Scholar 

  17. Sackellares JC, Shiau DS, Halford JJ, LaRoche SM, Kelly KM (2011) Quantitative EEG analysis for automated detection of nonconvulsive seizures in intensive care units. Epilepsy Behav 22(Suppl 1):S69–S73

    Article  PubMed  PubMed Central  Google Scholar 

  18. Freye E (2005) Cerebral monitoring in the operating room and the intensive care unit—an introductory for the clinician and a guide for the novice wanting to open a window to the brain. Part II: sensory-evoked potentials (SSEP, AEP, VEP). J Clin Monit Comput 19:77–168

    Article  PubMed  Google Scholar 

  19. Bein B (2006) Entropy. Best Pract Res Clin Anaesthesiol 20:101–109

    Article  CAS  PubMed  Google Scholar 

  20. Bischoff P, Schmidt G (2006) Monitoring methods: SNAP. Best Pract Res Clin Anaesthesiol 20:141–146

    Article  CAS  PubMed  Google Scholar 

  21. Drover D, Ortega HR (2006) Patient state index. Best Pract Res Clin Anaesthesiol 20:121–128

    Article  PubMed  Google Scholar 

  22. Hirsch LJ, LaRoche SM, Gaspard N, Gerard E, Svoronos A et al (2013) American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2012 version. J Clin Neurophysiol 30:1–27

    Article  CAS  PubMed  Google Scholar 

  23. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK et al (2014) The international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the neurocritical care society and the European society of intensive care medicine. Neurocrit Care 21(Suppl 2):282–296

    Article  Google Scholar 

  24. Synek VM (1988) Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults. J Clin Neurophysiol 5:161–174

    Article  CAS  PubMed  Google Scholar 

  25. Young GB, Bolton CF, Archibald YM, Austin TW, Wells GA (1992) The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol 9:145–152

    Article  CAS  PubMed  Google Scholar 

  26. LeBlanc JM, Dasta JF, Kane-Gill SL (2006) Role of the bispectral index in sedation monitoring in the ICU. Ann Pharmacother 40:490–500

    Article  PubMed  Google Scholar 

  27. Theilen HJ, Ragaller M, Tscho U, May SA, Schackert G et al (2000) Electroencephalogram silence ratio for early outcome prognosis in severe head trauma. Crit Care Med 28:3522–3529

    Article  CAS  PubMed  Google Scholar 

  28. Oddo M, Carrera E, Claassen J, Mayer SA, Hirsch LJ (2009) Continuous electroencephalography in the medical intensive care unit. Crit Care Med 37:2051–2056

    Article  PubMed  Google Scholar 

  29. Kurtz P, Gaspard N, Wahl AS, Bauer RM, Hirsch LJ et al (2014) Continuous electroencephalography in a surgical intensive care unit. Intensive Care Med 40:228–234

    Article  PubMed  Google Scholar 

  30. Azabou E, Magalhaes E, Braconnier A, Yahiaoui L, Moneger G et al (2015) Early standard electroencephalogram abnormalities predict mortality in septic Intensive Care Unit patients. PLoS One 10:e0139969

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gilmore EJ, Gaspard N, Choi HA, Cohen E, Burkart KM et al (2015) Acute brain failure in severe sepsis: a prospective study in the medical intensive care unit utilizing continuous EEG monitoring. Intensive Care Med 41:686–694

    Article  PubMed  Google Scholar 

  32. Nuwer M (1997) Assessment of digital EEG, quantitative EEG, and EEG brain mapping: report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology 49:277–292

    Article  CAS  PubMed  Google Scholar 

  33. Thakor NV, Tong S (2004) Advances in quantitative electroencephalogram analysis methods. Annu Rev Biomed Eng 6:453–495

    Article  CAS  PubMed  Google Scholar 

  34. Haider HA, Esteller R, Hahn CD, Westover MB, Halford JJ et al (2016) Sensitivity of quantitative EEG for seizure identification in the intensive care unit. Neurology 87:935–944

    Article  PubMed  Google Scholar 

  35. Shepherd J, Jones J, Frampton G, Bryant J, Baxter L et al (2013) Clinical effectiveness and cost-effectiveness of depth of anaesthesia monitoring (E-Entropy, Bispectral Index and Narcotrend): a systematic review and economic evaluation. Health Technol Assess 17:1–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rathakrishnan R, Gotman J, Dubeau F, Angle M (2011) Using continuous electroencephalography in the management of delayed cerebral ischemia following subarachnoid hemorrhage. Neurocrit Care 14:152–161

    Article  PubMed  Google Scholar 

  37. Vespa PM, Nuwer MR, Juhasz C, Alexander M, Nenov V et al (1997) Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol 103:607–615

    Article  CAS  PubMed  Google Scholar 

  38. Hebb MO, McArthur DL, Alger J, Etchepare M, Glenn TC et al (2007) Impaired percent alpha variability on continuous electroencephalography is associated with thalamic injury and predicts poor long-term outcome after human traumatic brain injury. J Neurotrauma 24:579–590

    Article  PubMed  Google Scholar 

  39. Vespa PM, Boscardin WJ, Hovda DA, McArthur DL, Nuwer MR et al (2002) Early and persistent impaired percent alpha variability on continuous electroencephalography monitoring as predictive of poor outcome after traumatic brain injury. J Neurosurg 97:84–92

    Article  PubMed  Google Scholar 

  40. Ma Y, Ouyang B, Guan X (2016) Use of quantitative electroencephalogram in patients with septic shock. Zhonghua Yi Xue Za Zhi 96:195–198

    PubMed  Google Scholar 

  41. Azabou E, Fischer C, Mauguiere F, Vaugier I, Annane D, et al. (2015) Prospective Cohort Study Evaluating the Prognostic Value of Simple EEG Parameters in Postanoxic Coma. Clin EEG Neurosci

  42. Gilmore EJ, Gaspard N, Choi HA, Cohen E, Burkart KM et al (2015) Acute brain failure in severe sepsis: a prospective study in the medical intensive care unit utilizing continuous EEG monitoring. Intensive Care Med 41:686–694

    Article  PubMed  Google Scholar 

  43. Hermans MC, Westover MB, van Putten MJ, Hirsch LJ, Gaspard N (2016) Quantification of EEG reactivity in comatose patients. Clin Neurophysiol 127:571–580

    Article  PubMed  Google Scholar 

  44. Yamada T (1988) The anatomic and physiologic bases of median nerve somatosensory evoked potentials. Neurol Clin 6:705–733

    CAS  PubMed  Google Scholar 

  45. Kimura J, Ishida T, Suzuki S, Kudo Y, Matsuoka H et al (1986) Far-field recording of the junctional potential generated by median nerve volleys at the wrist. Neurology 36:1451–1457

    Article  CAS  PubMed  Google Scholar 

  46. Yamada T, Ishida T, Kudo Y, Rodnitzky RL, Kimura J (1986) Clinical correlates of abnormal P14 in median SEPs. Neurology 36:765–771

    Article  CAS  PubMed  Google Scholar 

  47. Yamada T, Kimura J, Nitz DM (1980) Short latency somatosensory evoked potentials following median nerve stimulation in man. Electroencephalogr Clin Neurophysiol 48:367–376

    Article  CAS  PubMed  Google Scholar 

  48. Mauguiere F, Grand C, Fischer C, Courjon J (1982) Aspects of early somatosensory and auditory evoked potentials in neurologic comas and brain death. Rev Electroencephalogr Neurophysiol Clin 12:280–285

    Article  CAS  PubMed  Google Scholar 

  49. Hashimoto I (1982) Auditory evoked potentials from the human midbrain: slow brain stem responses. Electroencephalogr Clin Neurophysiol 53:652–657

    Article  CAS  PubMed  Google Scholar 

  50. Kaseda Y, Tobimatsu S, Morioka T, Kato M (1991) Auditory middle-latency responses in patients with localized and non-localized lesions of the central nervous system. J Neurol 238:427–432

    Article  CAS  PubMed  Google Scholar 

  51. Luaute J, Fischer C, Adeleine P, Morlet D, Tell L et al (2005) Late auditory and event-related potentials can be useful to predict good functional outcome after coma. Arch Phys Med Rehabil 86:917–923

    Article  PubMed  Google Scholar 

  52. Fischer C, Morlet D, Bouchet P, Luaute J, Jourdan C et al (1999) Mismatch negativity and late auditory evoked potentials in comatose patients. Clin Neurophysiol 110:1601–1610

    Article  CAS  PubMed  Google Scholar 

  53. Yingling CD, Hosobuchi Y, Harrington M (1990) P300 as a predictor of recovery from coma. Lancet 336:873

    Article  CAS  PubMed  Google Scholar 

  54. Fischer C, Luaute J, Nemoz C, Morlet D, Kirkorian G et al (2006) Improved prediction of awakening or nonawakening from severe anoxic coma using tree-based classification analysis. Crit Care Med 34:1520–1524

    Article  PubMed  Google Scholar 

  55. Narayan RK, Greenberg RP, Miller JD, Enas GG, Choi SC et al (1981) Improved confidence of outcome prediction in severe head injury. A comparative analysis of the clinical examination, multimodality evoked potentials, CT scanning, and intracranial pressure. J Neurosurg 54:751–762

    Article  CAS  PubMed  Google Scholar 

  56. Fischer C, Morlet D, Luaute J (2004) Sensory and cognitive evoked potentials in the prognosis of coma. Suppl Clin Neurophysiol 57:656–661

    Article  PubMed  Google Scholar 

  57. Rappaport M, Hall K, Hopkins HK, Belleza T (1981) Evoked potentials and head injury. 1. Rating of evoked potential abnormality. Clin Electroencephalogr 12:154–166

    Article  CAS  PubMed  Google Scholar 

  58. Rappaport M, Hopkins HK, Hall K, Belleza T (1981) Evoked potentials and head injury. 2. Clinical applications. Clin Electroencephalogr 12:167–176

    Article  CAS  PubMed  Google Scholar 

  59. Caramia MD, Bernardi G, Zarola F, Rossini PM (1988) Neurophysiological evaluation of the central nervous impulse propagation in patients with sensorimotor disturbances. Electroencephalogr Clin Neurophysiol 70:16–25

    Article  CAS  PubMed  Google Scholar 

  60. Desmedt JE, Manil J, Borenstein S, Debecker J, Lambert C et al (1966) Evaluation of sensory nerve conduction from averaged cerebral evoked potentials in neuropathies. Electromyography 6:263–269

    CAS  PubMed  Google Scholar 

  61. Parry GJ, Aminoff MJ (1987) Somatosensory evoked potentials in chronic acquired demyelinating peripheral neuropathy. Neurology 37:313–316

    Article  CAS  PubMed  Google Scholar 

  62. Rattay F, Potrusil T, Wenger C, Wise AK, Glueckert R et al (2013) Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons. PLoS One 8:e79256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klistorner A, Garrick R, Barnett MH, Graham SL, Arvind H et al (2013) Axonal loss in non-optic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential. Neurology 80:242–245

    Article  PubMed  Google Scholar 

  64. Walsh JC, Yiannikas C, McLeod JG (1984) Abnormalities of proximal conduction in acute idiopathic polyneuritis: comparison of short latency evoked potentials and F-waves. J Neurol Neurosurg Psychiatry 47:197–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Amantini A, Grippo A, Fossi S, Cesaretti C, Piccioli A et al (2005) Prediction of ‘awakening’ and outcome in prolonged acute coma from severe traumatic brain injury: evidence for validity of short latency SEPs. Clin Neurophysiol 116:229–235

    Article  PubMed  Google Scholar 

  66. Zammit C, Knight WA (2013) Severe traumatic brain injury in adults. Emerg Med Pract 15:1–28

    PubMed  Google Scholar 

  67. Sharshar T, Carlier R, Bernard F, Guidoux C, Brouland JP et al (2007) Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med 33:798–806

    Article  PubMed  Google Scholar 

  68. Sharshar T, Gray F, Poron F, Raphael JC, Gajdos P et al (2002) Multifocal necrotizing leukoencephalopathy in septic shock. Crit Care Med 30:2371–2375

    Article  CAS  PubMed  Google Scholar 

  69. Zauner C, Gendo A, Kramer L, Kranz A, Grimm G et al (2000) Metabolic encephalopathy in critically ill patients suffering from septic or nonseptic multiple organ failure. Crit Care Med 28:1310–1315

    Article  CAS  PubMed  Google Scholar 

  70. Meythaler JM, Peduzzi JD, Eleftheriou E, Novack TA (2001) Current concepts: diffuse axonal injury-associated traumatic brain injury. Arch Phys Med Rehabil 82:1461–1471

    Article  CAS  PubMed  Google Scholar 

  71. Mikacenic C, Hahn WO, Price BL, Harju-Baker S, Katz R et al (2015) Biomarkers of endothelial activation are associated with poor outcome in critical illness. PLoS One 10:e0141251

    Article  PubMed  PubMed Central  Google Scholar 

  72. Latronico N, Bolton CF (2011) Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol 10:931–941

    Article  PubMed  Google Scholar 

  73. Latronico N, Fenzi F, Recupero D, Guarneri B, Tomelleri G et al (1996) Critical illness myopathy and neuropathy. Lancet 347:1579–1582

    Article  CAS  PubMed  Google Scholar 

  74. Zochodne DW, Bolton CF, Wells GA, Gilbert JJ, Hahn AF et al (1987) Critical illness polyneuropathy. A complication of sepsis and multiple organ failure. Brain 110(Pt 4):819–841

    Article  PubMed  Google Scholar 

  75. Presneill JJ, Waring PM, Layton JE, Maher DW, Cebon J et al (2000) Plasma granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor levels in critical illness including sepsis and septic shock: relation to disease severity, multiple organ dysfunction, and mortality. Crit Care Med 28:2344–2354

    Article  CAS  PubMed  Google Scholar 

  76. Walser H, Emre M, Janzer R (1986) Somatosensory evoked potentials in comatose patients: correlation with outcome and neuropathological findings. J Neurol 233:34–40

    Article  CAS  PubMed  Google Scholar 

  77. Bozza FA, D’Avila JC, Ritter C, Sonneville R, Sharshar T et al (2013) Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy. Shock 39(Suppl 1):10–16

    Article  CAS  PubMed  Google Scholar 

  78. Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963

    Article  PubMed  Google Scholar 

  79. Polito A, Eischwald F, Maho AL, Azabou E, Annane D et al (2013) Pattern of brain injury in the acute setting of human septic shock. Crit Care 17:R204

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sharshar T, Bozza F, Chretien F (2014) Neuropathological processes in sepsis. Lancet Neurol 13:534–536

    Article  PubMed  Google Scholar 

  81. Sharshar T, Gray F, Lorin de la Grandmaison G, Hopkinson NS, Ross E et al (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805

    Article  CAS  PubMed  Google Scholar 

  82. Sonneville R, Vanhorebeek I, den Hertog HM, Chretien F, Annane D et al (2015) Critical illness-induced dysglycemia and the brain. Intensive Care Med 41:192–202

    Article  CAS  PubMed  Google Scholar 

  83. Sonneville R, Verdonk F, Rauturier C, Klein IF, Wolff M et al (2013) Understanding brain dysfunction in sepsis. Ann Intensive Care 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sutter R, Chalela JA, Leigh R, Kaplan PW, Yenokyan G et al (2015) Significance of parenchymal brain damage in patients with critical illness. Neurocrit Care 23:243–252

    Article  PubMed  Google Scholar 

  85. Kane NM, Curry SH, Butler SR, Cummins BH (1993) Electrophysiological indicator of awakening from coma. Lancet 341:688

    Article  CAS  PubMed  Google Scholar 

  86. Naccache L, Puybasset L, Gaillard R, Serve E, Willer JC (2005) Auditory mismatch negativity is a good predictor of awakening in comatose patients: a fast and reliable procedure. Clin Neurophysiol 116:988–989

    Article  PubMed  Google Scholar 

  87. Fossi S, Amantini A, Grippo A, Innocenti P, Amadori A et al (2006) Continuous EEG-SEP monitoring of severely brain injured patients in NICU: methods and feasibility. Neurophysiol Clin 36:195–205

    Article  CAS  PubMed  Google Scholar 

  88. Moulton R, Kresta P, Ramirez M, Tucker W (1991) Continuous automated monitoring of somatosensory evoked potentials in posttraumatic coma. J Trauma 31:676–683 (discussion 683–675)

    Article  CAS  PubMed  Google Scholar 

  89. Facco E, Munari M, Baratto F, Behr AU, Giron GP (1993) Multimodality evoked potentials (auditory, somatosensory and motor) in coma. Neurophysiol Clin 23:237–258

    Article  CAS  PubMed  Google Scholar 

  90. Guerit JM (1994) The interest of multimodality evoked potentials in the evaluation of chronic coma. Acta Neurol Belg 94:174–182

    CAS  PubMed  Google Scholar 

  91. Guerit JM, de Tourtchaninoff M, Soveges L, Mahieu P (1993) The prognostic value of three-modality evoked potentials (TMEPs) in anoxic and traumatic comas. Neurophysiol Clin 23:209–226

    Article  CAS  PubMed  Google Scholar 

  92. Logi F, Fischer C, Murri L, Mauguiere F (2003) The prognostic value of evoked responses from primary somatosensory and auditory cortex in comatose patients. Clin Neurophysiol 114:1615–1627

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Azabou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azabou, E., Fischer, C., Guerit, J.M. et al. Neurophysiological assessment of brain dysfunction in critically ill patients: an update. Neurol Sci 38, 715–726 (2017). https://doi.org/10.1007/s10072-017-2824-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-2824-x

Keywords

Navigation