Skip to main content

Advertisement

Log in

Iron metabolism and its detection through MRI in parkinsonian disorders: a systematic review

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Iron deposition in the brain normally increase with age, but its accumulation in certain regions is observed in a number of neurodegenerative diseases including Parkinson’s disease (PD) and other parkinsonisms. Whether iron overload leads to dopaminergic neuronal death in the SN of PD patients or is instead simply a by-product of the neurodegenerative progression is still yet to be ascertained. Magnetic resonance imaging (MRI) is a non-invasive method to assess brain iron content in PD patients. In PD, accurate radiologic visualization of basal ganglia is required. Deep gray matter nuclei are well presented in T2- and T2*-weighted images. T2*-weighted gradient-echo (GRE) is widely used to assess calcifications and also for iron detection. On the other hand, new methods specifically designed for detecting iron-induced susceptibility differences can be further improved by sequences like susceptibility-weighted imaging (SWI). In the present review, we aim to summarize the available data on brain iron deposition in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas M, Jankovich J (2004) Neurodegenerative disease and iron storage in the brain. Curr Opin Neurol 17(4):437–442

    Article  PubMed  Google Scholar 

  2. Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131(2S-2):568S–579S

    CAS  PubMed  Google Scholar 

  3. Aisen P, Enns C, Wessling-Resnick M (2001) Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 33(10):940–959

    Article  CAS  PubMed  Google Scholar 

  4. Gerlach M, Ben-Shachar D, Riederer P, Youdim MB (1994) Altereted brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63(3):793–807

    Article  CAS  PubMed  Google Scholar 

  5. Borie C, Gasparini F, Verpillat P, Bonnet AM, Agid Y, Hetet G, Brice A, Dürr A, Grandchamp B, French Parkinson’s disease genetic study group (2002) Association study between iron-related genes polymorphisms and Parkinson’s disease. J Neurol 249(7):801–804

    Article  PubMed  Google Scholar 

  6. Deplazes J, Schöbel K, Hochstrasser H, Bauer P, Walter U, Behnke S, Spiegel J, Becker G, Riess O, Berg D (2004) Screening for mutations of the IRP2 gene in Parkinson’s disease patients with hyperechogenicity of the substantia nigra. J Neural Transm (Vienna) 111(4):515–521

    Article  CAS  Google Scholar 

  7. Foglieni B, Ferrari F, Goldwurm S, Santambrogio P, Castiglioni E, Sessa M, Volontè MA, Lalli S, Galli C, Wang XS, Connor J, Sironi F, Canesi M, Biasiotto G, Pezzoli G, Levi S, Ferrari M, Arosio P, Cremonesi L (2007) Analysis of ferritin genes in Parkinson disease. Clin Chem Lab Med 45(11):1450–1456

    Article  CAS  PubMed  Google Scholar 

  8. He Q, Du T, Yu X, Xie A, Song N, Kang Q, Yu J, Tan L, Xie J, Jiang H (2011) DMT1 polymorphism and risk of Parkinson’s disease. Neurosci Lett 501(3):128–131. https://doi.org/10.1016/j.neulet.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  9. Ben-Shachar D, Youdim MB (1991) Intranigral iron injection induces behavioral and biochemical “parkinsonism” in rats. J Neurochem 57(6):2133–2135

    Article  CAS  PubMed  Google Scholar 

  10. Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA, Cherny RA, Andersen JK (2007) Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 28(6):907–913

    Article  CAS  PubMed  Google Scholar 

  11. Miyajima H, Nishimura Y, Mizoguchi K, Sakamoto M, Shimizu T, Honda N (1987) Familial apoceruplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology 37(5):761–767

    Article  CAS  PubMed  Google Scholar 

  12. McNeill A, Pandolfo M, Kuhn J, Shang H, Miyajima H (2008) The neurological presentation of ceruloplasmin gene mutations. Eur Neurol 60(4):200–205. https://doi.org/10.1159/000148691

    Article  PubMed  Google Scholar 

  13. Crompton DE, Chinnery PF, Fey C, Curtis AR, Morris CM, Kierstan J, Burt A, Young F, Coulthard A, Curtis A, Ince PG, Bates D, Jackson MJ, Burn J (2002) Neuroferrinopathy: a window on the role of iron in neurodegeneration. Blood Cells Mol Dis 29(3):522–531

    Article  CAS  PubMed  Google Scholar 

  14. Chinnery PF, Crompton DE, Birchall D, Jackson MJ, Coulthard A, Lombès A, Quinn N, Wills A, Fletcher N, Mottershead JP, Cooper P, Kellett M, Bates D, Burn J (2007) Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 130(Pt 1):110–119

    PubMed  Google Scholar 

  15. Schneider SA, Hardy J, Bhatia KP (2012) Syndromes of neurodegeneration with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov Disord 27(1):42–53. https://doi.org/10.1002/mds.23971

    Article  CAS  PubMed  Google Scholar 

  16. Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37(6):899–909

    Article  CAS  PubMed  Google Scholar 

  17. Mandel S, Maor G, Youdim MB (2004) Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (−)-epigallocatechin-3-gallate. J Mol Neurosci 24(3):401–416

    Article  CAS  PubMed  Google Scholar 

  18. Youdim MB, Stephenson G, Ben Shachar D (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 1012:306–325

    Article  CAS  PubMed  Google Scholar 

  19. Ayton S, Lei P, Bush AI (2013) Free Radic Biol Med 62:76–89. https://doi.org/10.1016/j.freeradbiomed.2012.10.558

    Article  CAS  PubMed  Google Scholar 

  20. Dexter DT, Carayon A, Vidailhet M, Ruberg M, Agid F, Agid Y, Lees AJ, Wells FR, Jenner P, Marsden CD (1990) Decreased ferritin levels in brain in Parkinson’s disease. J Neurochem 55(1):16–20

    Article  CAS  PubMed  Google Scholar 

  21. Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nuñez MT, Garrick MD, Raisman-Vozari R, Hirsch EC (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A 105(47):18578–18583. https://doi.org/10.1073/pnas.0804373105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mash DC, Pablo J, Buck BE, Sanchez-Ramos J, Weiner WJ (1991) Distribution and number of transferrin receptors in Parkinson’s disease and in MPTP-treated mice. Exp Neurol 114(1):73–81

    Article  CAS  PubMed  Google Scholar 

  23. Morris CM, Edwardson JA (1994) Iron histochemistry of the substantia nigra in Parkinson’s disease. Neurodegeneration 3(4):277–282

    CAS  PubMed  Google Scholar 

  24. Faucheux BA, Hauw JJ, Agid Y, Hirsch EC (1997) The density of [125I]-transferrin binding sites on perikarya of melanized neurons of the substantia nigra is decreased in Parkinson’s disease. Brain Res 749(1):170–174

    Article  CAS  PubMed  Google Scholar 

  25. Lei P, Ayton S, Finkelstein DI, Adlard PA, Masters CL, Bush AI (2010) Tau protein: relevance to Parkinson’s disease. Int J Biochem Cell Biol 42(11):1775–1778. https://doi.org/10.1016/j.biocel.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  26. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, Wong BX, Adlard PA, Cherny RA, Lam LQ, Roberts BR, Volitakis I, Egan GF, McLean CA, Cappai R, Duce JA, Bush AI (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18(2):291–295. https://doi.org/10.1038/nm.2613

    Article  CAS  PubMed  Google Scholar 

  27. Zecca L, Casella L, Albertini A, Bellei C, Zucca FA, Engelen M, Zadlo A, Szewczyk G, Zareba M, Sarna T (2008) Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson’s disease. J Neurochem 106(4):1866–1875. https://doi.org/10.1111/j.1471-4159.2008.05541.x

    CAS  PubMed  Google Scholar 

  28. Fasano M, Bergamasco B, Lopiano L (2006) Modifications of the iron-neuromelanin system in Parkinson’s disease. J Neurochem 96(4):909–916

    Article  CAS  PubMed  Google Scholar 

  29. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  CAS  PubMed  Google Scholar 

  30. Hare DJ, Double KL (2016) Iron and dopamine: a toxin couple. Brain 139(Pt 4):1026–1035

    Article  PubMed  Google Scholar 

  31. Reimão S, Ferreira S, Nunes RG, Pita Lobo P, Neutel D, Abreu D, Gonçalves N, Campos J, Ferreira JJ (2016) Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early stage Parkinson’s disease. Eur J Neurol 23(2):368–374. https://doi.org/10.1111/ene.12838

    Article  PubMed  Google Scholar 

  32. Bartzokis G, Cummings JL, Markham CH, Marmarelis PZ, Treciokas LJ, Tishler TA, Marder SR, Mintz J (1999) MRI evaluation of brain iron in earlier- and later-onset Parkinson’s disease and normal subjects. Magn Reson Imaging 17(2):213–222

    Article  CAS  PubMed  Google Scholar 

  33. Martin WR, Wieler M, Gee M (2008) Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology 70(16 Pt 2):1411–1417. https://doi.org/10.1212/01.wnl.0000286384.31050.b5

    Article  CAS  PubMed  Google Scholar 

  34. Berg D (2011) Substantia nigra hyperechogenicity is a risk marker of Parkinson’s disease: yes. J Neural Transm (Vienna) 118(4):613–619. https://doi.org/10.1007/s00702-010-0565-6

    Article  Google Scholar 

  35. Wallis LI, Paley MN, Graham JM, Grünewald RA, Wignall EL, Joy HM, Griffiths PD (2008) MRI assessment of basal ganglia iron deposition in Parkinson’s disease. J Magn Reson Imaging 28(5):1061–1067. https://doi.org/10.1002/jmri.21563

    Article  PubMed  Google Scholar 

  36. Kosta P, Argyropoulou MI, Markoula S, Konitsiotis S (2006) MRI evaluation of the basal ganglia size and iron content in patients with Parkinson's disease. J Neurol 253(1):26

    Article  PubMed  Google Scholar 

  37. Bastos Leite AJ, van Straaten EC, Scheltens P, Lycklama G, Barkhof F (2004) Thalamic lesions in vascular dementia: low sensitivity of fluid-attenuated inversion recovery (FLAIR) imaging. Stroke 35(2):415–419

    Article  PubMed  Google Scholar 

  38. Hajnal JV, Bryant DJ, Kasuboski L, Pattany PM, De Coene B, Lewis PD, Pennock JM, Oatridge A, Young IR, Bydder GM (1992) Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 16(6):841–844

    Article  CAS  PubMed  Google Scholar 

  39. Mugler JP 3rd, Bao S, Mulkern RV, Guttmann CR, Robertson RL, Jolesz FA, Brookeman JR (2000) Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 216(3):891–899

    Article  PubMed  Google Scholar 

  40. Lichy MP, Wietek BM, Mugler JP 3rd, Horger W, Menzel MI, Anastasiadis A, Siegmann K, Niemeyer T, Königsrainer A, Kiefer B, Schick F, Claussen CD, Schlemmer HP (2005) Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experience. Investig Radiol 40(12):754–760

    Article  Google Scholar 

  41. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30(1):19–30. https://doi.org/10.3174/ajnr.A1400

    Article  CAS  PubMed  Google Scholar 

  42. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52(3):612–618

    Article  PubMed  Google Scholar 

  43. Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30(2):232–252. https://doi.org/10.3174/ajnr.A1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mori N, Miki Y, Kasahara S, Maeda C, Kanagaki M, Urayama S, Sawamoto N, Fukuyama H, Togashi K (2009) Susceptibility-weighted imaging at 3 Tesla delineates the optic radiation. Investig Radiol 44(3):140–145. https://doi.org/10.1097/RLI.0b013e318193ff25

    Article  Google Scholar 

  45. Lotfipour AK, Wharton S, Schwarz ST, Gontu V, Schäfer A, Peters AM, Bowtell RW, Auer DP, Gowland PA, Bajaj NP (2012) High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson’s disease. J Magn Reson Imaging 35(1):48–55. https://doi.org/10.1002/jmri.22752

    Article  PubMed  Google Scholar 

  46. Drayer BP, Olanow W, Burger P, Johnson GA, Herfkens R, Riederer S (1986) Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 159(2):493–498

    Article  CAS  PubMed  Google Scholar 

  47. Brooks DJ, Luthert P, Gadian D, Marsden CD (1989) Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J Neurol Neurosurg Psychiatry 52(1):108–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Antonini A, Leenders KL, Meier D, Oertel WH, Boesiger P, Anliker M (1993) T2 relaxation time in patients with Parkinson’s disease. Neurology 43(4):697–700

    Article  CAS  PubMed  Google Scholar 

  49. Zhang W, Sun SG, Jiang YH, Qiao X, Sun X, Wu Y (2009) Determination of brain iron content in patients with Parkinson’s disease using magnetic susceptibility imaging. Neurosci Bull 25(6):353–360. https://doi.org/10.1007/s12264-009-0225-8

  50. Grabner G, Haubenberger D, Rath J, Beisteiner R, Auff E, Trattnig S, Barth M (2010) A population-specific symmetric phase model to automatically analyze susceptibility-weighted imaging (SWI) phase shifts and phase symmetry in the human brain. J Magn Reson Imaging 31(1):215–220. https://doi.org/10.1002/jmri.22013

    Article  PubMed  Google Scholar 

  51. Zhang J, Zhang Y, Wang J, Cai P, Luo C, Qian Z, Dai Y, Feng H (2010) Characterizing iron deposition in Parkinson’s disease using susceptibility-weighted imaging: an in vivo MR study. Brain Res 1330:124–130. https://doi.org/10.1016/j.brainres.2010.03.036

    Article  CAS  PubMed  Google Scholar 

  52. Jin L, Wang J, Zhao L, Jin H, Fei G, Zhang Y, Zeng M, Zhong C (2011) Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson’s disease. Brain 134(Pt 1):50–58. https://doi.org/10.1093/brain/awq319

    Article  PubMed  Google Scholar 

  53. Wang C, Fan G, Xu K, Wang S (2013) Quantitative assessment of iron deposition in the midbrain using 3D-enhanced T2 star weighted angiography (ESWAN): a preliminary cross-sectional study of 20 Parkinson’s disease patients. Magn Reson Imaging 31(7):1068–1073. https://doi.org/10.1016/j.mri.2013.04.015

    Article  CAS  PubMed  Google Scholar 

  54. Ulla M, Bonny JM, Ouchchane L, Rieu I, Claise B, Durif F (2013) Is R2* a new MRI biomarker for the progression of Parkinson’s disease? A longitudinal follow-up. PLoS One 8(3):e57904. https://doi.org/10.1371/journal.pone.0057904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu SF, Zhu ZF, Kong Y, Zhang HP, Zhou GQ, Jiang QT, Meng XP (2014) Assessment of cerebral iron content in patients with Parkinson’s disease by the susceptibility-weighted MRI. Eur Rev Med Pharmacol Sci 18(18):2605–2608

    PubMed  Google Scholar 

  56. Barbosa JH, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, Salmon CE (2015) Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2. Magn Reson Imaging 33(5):559–565. https://doi.org/10.1016/j.mri.2015.02.021

  57. Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP (2014) The ‘swallow tail’ appearance of the healthy nigrosome—a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS One 9(4):e93814. https://doi.org/10.1371/journal.pone.0093814

  58. He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, Liu C, Chen K, Yan F (2015) Region-specific disturbed iron distribution in early idiopathic Parkinson’s disease measured by quantitative susceptibility mapping. Hum Brain Mapp 36(11):4407–4420. https://doi.org/10.1002/hbm.22928

    Article  PubMed  Google Scholar 

  59. Guan X, Xuan M, Gu Q, Huang P, Liu C, Wang N, Xu X, Luo W, Zhang M (2016) Regionally progressive accumulation of iron in Parkinson’s disease as measured by quantitative susceptibility mapping. NMR Biomed. https://doi.org/10.1002/nbm.3489

  60. Hopes L, Grolez G, Moreau C, Lopes R, Ryckewaert G, Carrière N, Auger F, Laloux C, Petrault M, Devedjian JC, Bordet R, Defebvre L, Jissendi P, Delmaire C, Devos D (2016) Magnetic resonance imaging features of the nigrostriatal system: biomarker of Parkinson’s disease stages? PLoS One 11(4):e0147947. https://doi.org/10.1371/journal.pone.0147947

    Article  PubMed  PubMed Central  Google Scholar 

  61. Peckham ME, Dashtipour K, Holshouser BA, Kani C, Boscanin A, Kani K, Harder SL (2016) Novel pattern of iron deposition in the fascicula nigrale in patients with Parkinson’s disease. A Pilot Study 2016:9305018. https://doi.org/10.1155/2016/9305018

  62. Martin-Bastida A, Lao-Kaim NP, Loane C, Politis M, Roussakis AA, Valle-Guzman N, Kefalopoulou Z, Paul-Visse G, Widner H, Xing Y, Schwarz ST, Auer DP, Foltynie T, Barker RA, Piccini P (2017) Motor associations of iron accumulation in deep grey matter nuclei in Parkinson’s disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility. Eur J Neurol 24(2):357–365. https://doi.org/10.1111/ene.13208

    Article  CAS  PubMed  Google Scholar 

  63. Wang JY, Zhuang QQ, Zhu LB, Zhu H, Li T, Li R, Chen SF, Huang CP, Zhang X, Zhu JH (2016) Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep 6:36669. https://doi.org/10.1038/srep36669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kashihara K, Shinya T, Higaki F (2011) Neuromelanin magnetic resonance imaging of nigral volume loss in patients with Parkinson’s disease. J Clin Neurosci 18(8):1093–1096. https://doi.org/10.1016/j.jocn.2010.08.043

    Article  PubMed  Google Scholar 

  65. Schwarz ST, Rittman T, Gontu V, Morgan PS, Bajaj N, Auer DP (2011) T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson’s disease. Mov Disord 26(9):1633–1638. https://doi.org/10.1002/mds.23722

    Article  PubMed  Google Scholar 

  66. Matsuura K, Maeda M, Yata K, Ichiba Y, Yamaguchi T, Kanamaru K, Tomimoto H (2013) Neuromelanin magnetic resonance imaging in Parkinson’s disease and multiple system atrophy. Eur Neurol 70(1–2):70–77. https://doi.org/10.1159/000350291

    Article  CAS  PubMed  Google Scholar 

  67. Miyoshi F, Ogawa T, Kitao SI, Kitayama M, Shinohara Y, Takasugi M, Fujii S, Kaminou T (2013) Evaluation of Parkinson disease and Alzheimer disease with the use of neuromelanin MR imaging and (123)I-metaiodobenzylguanidine scintigraphy. AJNR Am J Neuroradiol Nov-Dec 34(11):2113–2118. https://doi.org/10.3174/ajnr.A3567

    Article  CAS  Google Scholar 

  68. Castellanos G, Fernández-Seara MA, Lorenzo-Betancor O, Ortega-Cubero S, Puigvert M, Uranga J, Vidorreta M, Irigoyen J, Lorenzo E, Muñoz-Barrutia A, Ortiz-de-Solorzano C, Pastor P, Pastor MA (2015) Automated neuromelanin imaging as a diagnostic biomarker for Parkinson’s disease. Mov Disord 30(7):945–952. https://doi.org/10.1002/mds.26201

    Article  PubMed  Google Scholar 

  69. Fabbri M, Reimão S, Carvalho M, Nunes RG, Abreu D, Guedes LC, Bouça R, Lobo PP, Godinho C, Coelho M, Gonçalves NC, Rosa MM, Antonini A, Ferreira JJ (2017) Substantia Nigra Neuromelanin as an imaging biomarker of disease progression in Parkinson’s disease. J Parkinsons Dis. https://doi.org/10.3233/JPD-171135

  70. Dexter DT, Statton SA, Whitmore C, Freinbichler W, Weinberger P, Tipton KF, Della Corte L, Ward RJ, Crichton RR (2011) Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J Neural Transm (Vienna) 118(2):223–231. https://doi.org/10.1007/s00702-010-0531-3

    Article  CAS  Google Scholar 

  71. Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, Jonneaux A, Ryckewaert G, Garçon G, Rouaix N, Duhamel A, Jissendi P, Dujardin K, Auger F, Ravasi L, Hopes L, Grolez G, Firdaus W, Sablonnière B, Strubi-Vuillaume I, Zahr N, Destée A, Corvol JC, Pöltl D, Leist M, Rose C, Defebvre L, Marchetti P, Cabantchik ZI, Bordet R (2014) Targeting chetable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21(2):195–210. https://doi.org/10.1089/ars.2013.5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Pietracupa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietracupa, S., Martin-Bastida, A. & Piccini, P. Iron metabolism and its detection through MRI in parkinsonian disorders: a systematic review. Neurol Sci 38, 2095–2101 (2017). https://doi.org/10.1007/s10072-017-3099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-3099-y

Keywords

Navigation