Skip to main content
Log in

Mechanotransduction in embryonic vascular development

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial–venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Alk1:

Activin receptor-like kinase 1

AP-1:

Activator protein-1

ASS:

Argininosuccinate synthase

ATF-2:

Activating transcription factor-2

CBP:

CREB-binding protein

DLAV:

Dorsal longitudinal anastamotic vessel

DLL4:

Delta-like 4

EDHF:

Endothelial-derived hyperpolarizing factor

EDN:

Endothelin

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-related kinase

HDAC:

Histone deacetylase

HH:

Hamburger–Hamilton

HMOX-1:

Heme oxygenase-1

ICAM-1:

Intracellular adhesion molecule

IκB:

Inhibitor of κB

IKK:

IκB kinase

ISV:

Intersegmental vessel

Jag:

Jagged

JNK:

Jun kinase

KLF:

Krüppel-like factor

MAPK:

Mitogen-activated protein kinase

MCP-1:

Macrophage chemotactic protein-1

MEF:

Myocyte enhancer factor

MEK:

Mitogen-activated protein kinase kinase

miR:

MicroRNA

NF-κB:

Nuclear factor kappa B

NIK:

NF-κB-inducing kinase

NO:

Nitric oxide

NRF-2:

Nuclear factor erythroid 2-related factor 2

NRP:

Neuropilin

PECAM-1:

Platelet endothelial cell adhesion molecule

PI3K:

Phosphatidyl inositol-3-kinase

PPAR:

Peroxisome proliferator-activated receptor

PTGDS:

Prostaglandin D2 synthase

RB:

Retinoblastoma protein

RISC:

RNA-induced silencing complex

RPSI:

Relative pulse slope index

RUNX1:

Runt-related transcription factor 1

SELE:

E-selectin

TNNT2:

Cardiac troponin T2

VCAM-1:

Vascular cell adhesion molecule-1

VECAD:

Vascular endothelial cadherin

VEGFR2:

Vascular endothelial growth factor receptor 2

βTRC:

Beta-transducin repeat-containing protein

WSS:

Wall shear stress

References

  • AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104(7): 860–869. doi:10.1161/CIRCRESAHA.108.192765

    Google Scholar 

  • Anderson MJ, Pham VN, Vogel AM, Weinstein BM, Roman BL (2008) Loss of unc45a precipitates arteriovenous shunting in the aortic arches. Dev Biol 318(2): 258–267

    Google Scholar 

  • Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464(7285): 108–111. doi:10.1038/nature08738

    Google Scholar 

  • Bhullar IS, Li YS, Miao H, Zandi E, Kim M, Shyy JY, Chien S (1998) Fluid shear stress activation of IkappaB kinase is integrin-dependent. J Biol Chem 273(46): 30544–30549

    Google Scholar 

  • Blum Y, Belting HG, Ellertsdottir E, Herwig L, Luders F, Affolter M (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316(2): 312–322. doi:10.1016/j.ydbio.2008.01.038

    Google Scholar 

  • Boon RA, Fledderus JO, Volger OL, van Wanrooij EJ, Pardali E, Weesie F, Kuiper J, Pannekoek H, ten Dijke P, Horrevoets AJ (2007) KLF2 suppresses TGF-beta signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler Thromb Vasc Biol 27(3): 532–539. doi:10.1161/01.ATV.0000256466.65450.ce

    Google Scholar 

  • Boon RA, Leyen TA, Fontijn RD, Fledderus JO, Baggen JM, Volger OL, van Nieuw Amerongen GP, Horrevoets AJ (2010) KLF2-induced actin shear fibers control both alignment to flow and JNK signaling in vascular endothelium. Blood 115(12): 2533–2542. doi:10.1182/blood-2009-06-228726

    Google Scholar 

  • Brownlee RD, Langille BL (1991) Arterial adaptations to altered blood flow. Can J Physiol Pharmacol 69(7): 978–983

    Google Scholar 

  • Burggren WW (2004) What is the purpose of the embryonic heart beat? Or how facts can ultimately prevail over physiological dogma. Physiol Biochem Zool 77(3): 333–345. doi:10.1086/422230

    Google Scholar 

  • Buschmann I, Pries A, Styp-Rekowska B, Hillmeister P, Loufrani L, Henrion D, Shi Y, Duelsner A, Hoefer I, Gatzke N, Wang H, Lehmann K, Ulm L, Ritter Z, Hauff P, Hlushchuk R, Djonov V, van Veen T, le Noble F (2010) Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development 137(13): 2187–2196. doi:10.1242/dev.045351

    Google Scholar 

  • Bussmann J, Wolfe SA, Siekmann AF (2011) Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development 138(9): 1717–1726. doi:10.1242/dev.059881

    Google Scholar 

  • Cahill PD, Brown BA, Handen CE, Kosek JC, Miller DC (1987) Incomplete biochemical adaptation of vein grafts to the arterial environment in terms of prostacyclin production. J Vasc Surg 6(5): 496–503

    Google Scholar 

  • Cai W, Schaper W (2008) Mechanisms of arteriogenesis. Acta Biochim Biophys Sin (Shanghai) 40(8): 681–692

    Google Scholar 

  • Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R, Mannini L (2011) Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 214(2): 249–256. doi:10.1016/j.atherosclerosis.2010.09.008

    Google Scholar 

  • Checa S, Prendergast PJ (2010) Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J Biomech 43(5): 961–968. doi:10.1016/j.jbiomech.2009.10.044

    Google Scholar 

  • Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, Yuan S, Shyy JY, Chien S (2001) DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics 7(1): 55–63

    Google Scholar 

  • Chen CY, Patrick MJ, Corti P, Kowalski W, Roman BL, Pekkan K (2011) Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV. Biorheology 48(5): 305–321. doi:10.3233/BIR-2012-0600

    Google Scholar 

  • Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457(7231): 887–891. doi:10.1038/nature07619

    Google Scholar 

  • Chen Z, Tzima E (2009) PECAM-1 is necessary for flow-induced vascular remodeling. Arterioscler Thromb Vasc Biol 29(7): 1067–1073. doi:10.1161/ATVBAHA.109.186692

    Google Scholar 

  • Chu TJ, Peters DG (2008) Serial analysis of the vascular endothelial transcriptome under static and shear stress conditions. Physiol Genomics 34(2): 185–192. doi:10.1152/physiolgenomics.90201.2008

    Google Scholar 

  • Cirotto C, Arangi I (1989) Chick embryo survival under acute carbon monoxide challenges. Comp Biochem Physiol A Comp Physiol 94(1): 117–123

    Google Scholar 

  • Clark PR, Jensen TJ, Kluger MS, Morelock M, Hanidu A, Qi Z, Tatake RJ, Pober JS (2011) MEK5 is activated by shear stress, activates ERK5 and induces KLF4 to modulate TNF responses in human dermal microvascular endothelial cells. Microcirculation 18(2): 102–117. doi:10.1111/j.1549-8719.2010.00071.x

    Google Scholar 

  • Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K, Roman BL (2011) Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138(8): 1573–1582. doi:10.1242/dev.060467

    Google Scholar 

  • Das H, Kumar A, Lin Z, Patino WD, Hwang PM, Feinberg MW, Majumder PK, Jain MK (2006) Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci USA 103(17): 6653–6658. doi:10.1073/pnas.0508235103

    Google Scholar 

  • Dekker RJ, Boon RA, Rondaij MG, Kragt A, Volger OL, Elderkamp YW, Meijers JC, Voorberg J, Pannekoek H, Horrevoets AJ (2006) KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 107(11): 4354–4363

    Google Scholar 

  • Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100(5): 1689–1698

    Google Scholar 

  • Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167(2): 609–618

    Google Scholar 

  • Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ, Fruchart JC, Tedgui A, Haegeman G, Staels B (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 274(45): 32048–32054

    Google Scholar 

  • Di Stefano I, Koopmans DR, Langille BL (1998) Modulation of arterial growth of the rabbit carotid artery associated with experimental elevation of blood flow. J Vasc Res 35(1): 1–7

    Google Scholar 

  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736): 601–605. doi:10.1038/21224

    Google Scholar 

  • Duncan GS, Andrew DP, Takimoto H, Kaufman SA, Yoshida H, Spellberg J, de la Pompa JL, Elia A, Wakeham A, Karan-Tamir B, Muller WA, Senaldi G, Zukowski MM, Mak TW (1999) Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162(5): 3022–3030

    Google Scholar 

  • Dur O, Coskun T, Coskun K, Frakes D, Kara L, Pekkan K (2011) Computer-aided patient-specific coronary artery graft design improvements using CFD coupled shape optimizer. Cardiovasc Eng Technol doi:10.1007/s13239-13010-10029-z

  • Egginton S (2011) In vivo shear stress response. Biochem Soc Trans 39(6): 1633–1638. doi:10.1042/BST20110715

    Google Scholar 

  • Fang Y, Davies PF (2012) Site-specific microRNA-92a regulation of Kruppel-Like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. doi:10.1161/ATVBAHA.111.244053

  • Fang Y, Shi C, Manduchi E, Civelek M, Davies PF (2010) MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 107(30): 13450–13455. doi:10.1073/pnas.1002120107

    Google Scholar 

  • Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2): 272–284. doi:10.1016/j.devcel.2008.07.008

    Google Scholar 

  • Fledderus JO, Boon RA, Volger OL, Hurttila H, Yla-Herttuala S, Pannekoek H, Levonen AL, Horrevoets AJ (2008) KLF2 primes the antioxidant transcription factor Nrf2 for activation in endothelial cells. Arterioscler Thromb Vasc Biol 28(7): 1339–1346. doi:10.1161/ATVBAHA.108.165811

    Google Scholar 

  • Fledderus JO, van Thienen JV, Boon RA, Dekker RJ, Rohlena J, Volger OL, Bijnens AP, Daemen MJ, Kuiper J, van Berkel TJ, Pannekoek H, Horrevoets AJ (2007) Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood 109(10): 4249–4257

    Google Scholar 

  • Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93(10): e136–e142. doi:10.1161/01.RES.0000101744.47866.D5

    Google Scholar 

  • Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA Jr (2001) Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 98(8): 4478–4485

    Google Scholar 

  • Gilmanov A, Sotiropoulos F, Balaras E (2003) General reconstruction algorithm for simulating flows with complex 3D immersed boundaries on cartesian grids. J Comput Phys 191(2): 660–669

    MATH  Google Scholar 

  • Gleason RL, Humphrey JD (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41(4): 352–363

    Google Scholar 

  • Goktepe S, Abilez OJ, Parker KK, Kuhl E (2010) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol 265(3): 433–442. doi:10.1016/j.jtbi.2010.04.023

    Google Scholar 

  • Gray C, Packham IM, Wurmser F, Eastley NC, Hellewell PG, Ingham PW, Crossman DC, Chico TJ (2007) Ischemia is not required for arteriogenesis in zebrafish embryos. Arterioscler Thromb Vasc Biol 27(10): 2135–2141

    Google Scholar 

  • Groenendijk BC, Hierck BP, Gittenberger-De Groot AC, Poelmann RE (2004) Development-related changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing cardiovascular system of chicken embryos. Dev Dyn 230(1): 57–68. doi:10.1002/dvdy.20029

    Google Scholar 

  • Guidolin D, Albertin G, Sorato E, Oselladore B, Mascarin A, Ribatti D (2009) Mathematical modeling of the capillary-like pattern generated by adrenomedullin-treated human vascular endothelial cells in vitro. Dev Dyn 238(8): 1951–1963. doi:10.1002/dvdy.22022

    Google Scholar 

  • Hay DC, Beers C, Cameron V, Thomson L, Flitney FW, Hay RT (2003) Activation of NF-kappaB nuclear transcription factor by flow in human endothelial cells. Biochim Biophys Acta 1642(1–2): 33–44

    Google Scholar 

  • Henderson VJ, Cohen RG, Mitchell RS, Kosek JC, Miller DC (1986) Biochemical (functional) adaptation of “arterialized” vein grafts. Ann Surg 203(4): 339–345

    Google Scholar 

  • Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BC, Bax WH, Van der Laarse A, Deruiter MC, Horrevoets AJ, Poelmann RE (2008) Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 237(3): 725–735. doi:10.1002/dvdy.21472

    Google Scholar 

  • Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356): 316–323. doi:10.1038/nature10316

    Google Scholar 

  • Hoger JH, Ilyin VI, Forsyth S, Hoger A (2002) Shear stress regulates the endothelial Kir2.1 ion channel. Proc Natl Acad Sci USA 99(11): 7780–7785. doi:10.1073/pnas.102184999

    Google Scholar 

  • Hogers B, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE (1997) Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 80(4): 473–481

    Google Scholar 

  • Huang A, Sun D, Jacobson A, Carroll MA, Falck JR, Kaley G (2005) Epoxyeicosatrienoic acids are released to mediate shear stress-dependent hyperpolarization of arteriolar smooth muscle. Circ Res 96(3): 376–383. doi:10.1161/01.RES.0000155332.17783.26

    Google Scholar 

  • Huang C, Sheikh F, Hollander M, Cai C, Becker D, Chu PH, Evans S, Chen J (2003) Embryonic atrial function is essential for mouse embryogenesis, cardiac morphogenesis and angiogenesis. Development 130(24): 6111–6119. doi:10.1242/dev.00831

    Google Scholar 

  • Huddleson JP, Srinivasan S, Ahmad N, Lingrel JB (2004) Fluid shear stress induces endothelial KLF2 gene expression through a defined promoter region. Biol Chem 385(8): 723–729. doi:10.1515/BC.2004.088

    Google Scholar 

  • Humphrey JD (1999) Remodeling of a collagenous tissue at fixed lengths. J Biomech Eng 121(6): 591–597

    Google Scholar 

  • Hungerford JE, Little CD (1999) Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J Vasc Res 36(1): 2–27

    Google Scholar 

  • Iomini C, Tejada K, Mo W, Vaananen H, Piperno G (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164(6): 811–817. doi:10.1083/jcb.200312133

    Google Scholar 

  • Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230(2): 278–301

    Google Scholar 

  • Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21): 5281–5290

    Google Scholar 

  • Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W (1997) Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol 273(3 Pt 2): H1255–H1265

    Google Scholar 

  • Jacob E, Drexel M, Schwerte T, Pelster B (2002) Influence of hypoxia and of hypoxemia on the development of cardiac activity in zebrafish larvae. Am J Physiol Regul Integr Comp Physiol 283(4): R911–R917

    Google Scholar 

  • Jenkins MW, Peterson L, Gu S, Gargesha M, Wilson DL, Watanabe M, Rollins AM (2010) Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography. J Biomed Opt 15(6): 066022

    Google Scholar 

  • Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132(23): 5199–5209. doi:10.1242/dev.02087

    Google Scholar 

  • Jin ZG, Ueba H, Tanimoto T, Lungu AO, Frame MD, Berk BC (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93(4): 354–363. doi:10.1161/01.RES.0000089257.94002.96

    Google Scholar 

  • Johnson J, Hansen M, Wu I, Healy L, Johnson C, Jones G, Capecchi M, Keller C (2006) Virtual histology of transgenic mouse embryos for high-throughput phenotyping. PLoS Genet 2(4): e61

    Google Scholar 

  • Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442(7101): 453–456

    Google Scholar 

  • Kamiya A, Ando J, Shibata M, Wakayama H (1990) The efficiency of the vascular-tissue system for oxygen transport in the skeletal muscles. Microvasc Res 39(2): 169–185

    Google Scholar 

  • Kamiya A, Bukhari R, Togawa T (1984) Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol 46(1): 127–137

    Google Scholar 

  • Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239(1): H14–H21

    Google Scholar 

  • Kassab GS, Fung YC (1995) The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis. Ann Biomed Eng 23(1): 13–20

    Google Scholar 

  • Khachigian LM, Resnick N, Gimbrone MA Jr, Collins T (1995) Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J Clin Invest 96(2): 1169–1175

    Google Scholar 

  • Kim J, Min J, Recknagel A, Riccio M, Butcher J (2011) Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography. Anat Rec 294(1): 1–10

    Google Scholar 

  • Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437(2): 169–183. doi:10.1042/BJ20110301

    Google Scholar 

  • Kondapalli J, Flozak AS, Albuquerque ML (2004) Laminar shear stress differentially modulates gene expression of p120 catenin, Kaiso transcription factor, and vascular endothelial cadherin in human coronary artery endothelial cells. J Biol Chem 279(12): 11417–11424. doi:10.1074/jbc.M306057200

    Google Scholar 

  • Kowalski WJ, Teslovich NC, Dur O, Keller BB, Pekkan K (2012) Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo. Biomech Model Mechanobiol 4: 4

    Google Scholar 

  • Kumagai R, Lu X, Kassab GS (2009) Role of glycocalyx in flow-induced production of nitric oxide and reactive oxygen species. Free Radic Biol Med 47(5): 600–607. doi:10.1016/j.freeradbiomed.2009.05.034

    Google Scholar 

  • Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM (1997) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11(22): 2996–3006

    Google Scholar 

  • Lan Q, Mercurius KO, Davies PF (1994) Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress. Biochem Biophys Res Commun 201(2): 950–956

    Google Scholar 

  • Langille BL, Bendeck MP, Keeley FW (1989) Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am J Physiol 256(4 Pt 2): H931–H939

    Google Scholar 

  • Langille BL, Brownlee RD, Adamson SL (1990) Perinatal aortic growth in lambs: relation to blood flow changes at birth. Am J Physiol 259(4 Pt 2): H1247–H1253

    Google Scholar 

  • Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231(4736): 405–407

    Google Scholar 

  • Lawson ND, Vogel AM, Weinstein BM (2002) sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3(1): 127–136

    Google Scholar 

  • le Noble F, Klein C, Tintu A, Pries A, Buschmann I (2008) Neural guidance molecules, tip cells, and mechanical factors in vascular development. Cardiovasc Res 78(2): 232–241. doi:10.1093/cvr/cvn058

    Google Scholar 

  • le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131(2): 361–375. doi:10.1242/dev.00929

    Google Scholar 

  • Li D, Robertson AM (2009) A structural multi-mechanism damage model for cerebral arterial tissue. J Biomech Eng 131(10): 101013. doi:10.1115/1.3202559

    Google Scholar 

  • Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP (1999) Defective angiogenesis in mice lacking endoglin. Science 284(5419): 1534–1537

    Google Scholar 

  • Liu A, Wang R, Thornburg KL, Rugonyi S (2009) Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart. J Biomed Opt 14(4): 044020. doi:10.1117/1.3184462

    Google Scholar 

  • Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I (2008) Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovasc Res 80(3): 445–452. doi:10.1093/cvr/cvn207

    Google Scholar 

  • Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME (2007) Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134(18): 3317–3326. doi:10.1242/dev.02883

    Google Scholar 

  • Makikallio K, McElhinney DB, Levine JC, Marx GR, Colan SD, Marshall AC, Lock JE, Marcus EN, Tworetzky W (2006) Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation 113(11): 1401–1405

    Google Scholar 

  • Masumura T, Yamamoto K, Shimizu N, Obi S, Ando J (2009) Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler Thromb Vasc Biol 29(12): 2125–2131. doi:10.1161/ATVBAHA.109.193185

    Google Scholar 

  • Matsui H, Gardiner H (2007) Fetal intervention for cardiac disease: the cutting edge of perinatal care. Semin Fetal Neonatal Med 12(6):482–489. doi:10.1016/j.siny.2007.06.003

    Google Scholar 

  • May SR, Stewart NJ, Chang W, Peterson AS (2004) A Titin mutation defines roles for circulation in endothelial morphogenesis. Dev Biol 270(1): 31–46. doi:10.1016/j.ydbio.2004.02.006

    Google Scholar 

  • McDougall SR, Anderson AR, Chaplain MA, Sherratt JA (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64(4): 673–702. doi:10.1006/bulm.2002.0293

    Google Scholar 

  • McElhinney DB, Tworetzky W, Lock JE (2010) Current status of fetal cardiac intervention. Circulation 121(10): 1256–1263. doi:10.1161/circulationaha.109.870246

    Google Scholar 

  • Melchionna R, Porcelli D, Mangoni A, Carlini D, Liuzzo G, Spinetti G, Antonini A, Capogrossi MC, Napolitano M (2005) Laminar shear stress inhibits CXCR4 expression on endothelial cells: functional consequences for atherogenesis. Faseb J 19(6): 629–631

    Google Scholar 

  • Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX (2010) TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298(2): H466–H476. doi:10.1152/ajpheart.00854.2009

    Google Scholar 

  • Mochizuki S, Vink H, Hiramatsu O, Kajita T, Shigeto F, Spaan JA, Kajiya F (2003) Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am J Physiol Heart Circ Physiol 285(2): H722–H726. doi:10.1152/ajpheart.00691.2002

    Google Scholar 

  • Mondy JS, Lindner V, Miyashiro JK, Berk BC, Dean RH, Geary RL (1997) Platelet-derived growth factor ligand and receptor expression in response to altered blood flow in vivo. Circ Res 81(3): 320–327

    Google Scholar 

  • Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A (2001) Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128(17): 3359–3370

    Google Scholar 

  • Mun GI, Lee SJ, An SM, Kim IK, Boo YC (2009) Differential gene expression in young and senescent endothelial cells under static and laminar shear stress conditions. Free Radic Biol Med 47(3): 291–299. doi:10.1016/j.freeradbiomed.2009.04.032

    Google Scholar 

  • Nagel T, Resnick N, Dewey CF Jr, Gimbrone MA Jr (1999) Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler Thromb Vasc Biol 19(8): 1825–1834

    Google Scholar 

  • Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117(9): 1161–1171. doi:10.1161/CIRCULATIONAHA.107.710111

    Google Scholar 

  • Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND (2010) MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464(7292): 1196–1200

    Google Scholar 

  • Nikmanesh M, Shi ZD, Tarbell JM (2012) Heparan sulfate proteoglycan mediates shear stress-induced endothelial gene expression in mouse embryonic stem cell-derived endothelial cells. Biotechnol Bioeng 109(2): 583–594. doi:10.1002/bit.23302

    Google Scholar 

  • North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM, Weber GJ, Harris J, Cutting CC, Huang P, Dzierzak E, Zon LI (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137(4): 736–748. doi:10.1016/j.cell.2009.04.023

    Google Scholar 

  • Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masumura T, Sokabe T, Asahara T, Ando J (2009) Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol 106(1): 203–211

    Google Scholar 

  • Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97(6): 2626–2631

    Google Scholar 

  • Ohnesorge N, Viemann D, Schmidt N, Czymai T, Spiering D, Schmolke M, Ludwig S, Roth J, Goebeler M, Schmidt M (2010) Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4). J Biol Chem 285(34): 26199–26210. doi:10.1074/jbc.M110.103127

    Google Scholar 

  • Ohura N, Yamamoto K, Ichioka S, Sokabe T, Nakatsuka H, Baba A, Shibata M, Nakatsuka T, Harii K, Wada Y, Kohro T, Kodama T, Ando J (2003) Global analysis of shear stress-responsive genes in vascular endothelial cells. J Atheroscler Thromb 10(5): 304–313

    Google Scholar 

  • Olesen SP, Clapham DE, Davies PF (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331(6152): 168–170. doi:10.1038/331168a0

    Google Scholar 

  • Olivares AL, Marsal E, Planell JA, Lacroix D (2009) Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30(30): 6142–6149. doi:10.1016/j.biomaterials.2009.07.041

    Google Scholar 

  • Oosterbaan AM, Ursem NT, Struijk PC, Bosch JG, van der Steen AF, Steegers EA (2009) Doppler flow velocity waveforms in the embryonic chicken heart at developmental stages corresponding to 5–8 weeks of human gestation. Ultrasound Obstet Gynecol 33(6): 638–644. doi:10.1002/uog.6362

    Google Scholar 

  • Osawa M, Masuda M, Harada N, Lopes RB, Fujiwara K (1997) Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells. Eur J Cell Biol 72(3): 229–237

    Google Scholar 

  • Osawa M, Masuda M, Kusano K, Fujiwara K (2002) Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule. J Cell Biol 158(4): 773–785. doi:10.1083/jcb.200205049

    Google Scholar 

  • Othman-Hassan K, Patel K, Papoutsi M, Rodriguez-Niedenfuhr M, Christ B, Wilting J (2001) Arterial identity of endothelial cells is controlled by local cues. Dev Biol 237(2): 398–409. doi:10.1006/dbio.2001.0383

    Google Scholar 

  • Packham IM, Gray C, Heath PR, Hellewell PG, Ingham PW, Crossman DC, Milo M, Chico TJ (2009) Microarray profiling reveals CXCR4a is downregulated by blood flow in vivo and mediates collateral formation in zebrafish embryos. Physiol Genomics 38(3): 319–327

    Google Scholar 

  • Pahakis MY, Kosky JR, Dull RO, Tarbell JM (2007) The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun 355(1): 228–233. doi:10.1016/j.bbrc.2007.01.137

    Google Scholar 

  • Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone MA Jr, Garcia-Cardena G (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 116(1): 49–58

    Google Scholar 

  • Patrick MJ, Chen CY, Frakes DH, Dur O, Pekkan K (2011) Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal μ PIV. Exp Fluids 50(4):887–904. doi:10.1007/S00348-010-0943-8

  • Pekkan K, de Zelicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel MA, Yoganathan AP (2005) Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study. Ann Biomed Eng 33(3): 284–300

    Google Scholar 

  • Pekkan K, Dur O, Sundareswaran K, Kanter K, Fogel M, Yoganathan A, Undar A (2008) Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass. J Biomech Eng 130(6): 061012. doi:10.1115/1.2978988

    Google Scholar 

  • Pelster B, Burrgen WW (1996) Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). Circ Res 79(2): 358–362

    Google Scholar 

  • Philip JT, Dahl KN (2008) Nuclear mechanotransduction: response of the lamina to extracellular stress with implications in aging. J Biomech 41(15): 3164–3170. doi:10.1016/j.jbiomech.2008.08.024

    Google Scholar 

  • Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J, Li YS, Chien S, Wang N (2010) MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci USA 107(7): 3240–3244. doi:10.1073/pnas.0914882107

    Google Scholar 

  • Rachev A (1997) Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J Biomech 30(8): 819–827

    Google Scholar 

  • Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF Jr, Gimbrone MA Jr (1993) Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci USA 90(10): 4591–4595

    Google Scholar 

  • Robertson A, Hill M, Li D (2011) Structurally motivated damage models for arterial walls—theory and application. In: Ambrosi D, Quarteroni A, Rozza G (eds) Modelling of physiological flows. Springer, Berlin

    Google Scholar 

  • Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4): 455–467

    Google Scholar 

  • Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129(12): 3009–3019

    Google Scholar 

  • Rugonyi S, Shaut C, Liu A, Thornburg K, Wang R (2008) Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation. Phys Med Biol 53(18): 5077–5091

    Google Scholar 

  • Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DY (2002) Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31(1): 106–110

    Google Scholar 

  • SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA Jr, Garcia-Cardena G, Jain MK (2004) KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199(10): 1305–1315. doi:10.1084/jem.20031132

    Google Scholar 

  • Sharma N, Berbari NF, Yoder BK (2008) Ciliary dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol 85: 371–427. doi:10.1016/S0070-2153(08)00813-2

    Google Scholar 

  • Shay-Salit A, Shushy M, Wolfovitz E, Yahav H, Breviario F, Dejana E, Resnick N (2002) VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci USA 99(14): 9462–9467. doi:10.1073/pnas.142224299

    Google Scholar 

  • Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O (1996) Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 93(23): 13176–13181

    Google Scholar 

  • Shyy JY, Lin MC, Han J, Lu Y, Petrime M, Chien S (1995) The cis-acting phorbol ester “12-O-tetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci USA 92(17): 8069–8073

    Google Scholar 

  • Shyy YJ, Hsieh HJ, Usami S, Chien S (1994) Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci USA 91(11): 4678–4682

    Google Scholar 

  • Srinivasan S, Baldwin HS, Aristizabal O, Kwee L, Labow M, Artman M, Turnbull DH (1998) Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography. Circulation 98(9): 912–918

    Google Scholar 

  • Strilic B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S, Dejana E, Ferrara N, Lammert E (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17(4): 505–515. doi:10.1016/j.devcel.2009.08.011

    Google Scholar 

  • Sun S, Wheeler MF, Obeyesekere M, Patrick CW Jr (2005) A deterministic model of growth factor-induced angiogenesis. Bull Math Biol 67(2): 313–337. doi:10.1016/j.bulm.2004.07.004

    MathSciNet  Google Scholar 

  • Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem 149(1): 15–25. doi:10.1093/jb/mvq113

    Google Scholar 

  • Taber LA (1998a) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120(3): 348–354

    Google Scholar 

  • Taber LA (1998b) An optimization principle for vascular radius including the effects of smooth muscle tone. Biophys J 74(1): 109–114

    Google Scholar 

  • Taber LA, Ng S, Quesnel AM, Whatman J, Carmen CJ (2001) Investigating Murray’s law in the chick embryo. J Biomech 34(1): 121–124

    Google Scholar 

  • Takaki A, Morikawa K, Tsutsui M, Murayama Y, Tekes E, Yamagishi H, Ohashi J, Yada T, Yanagihara N, Shimokawa H (2008) Crucial role of nitric oxide synthases system in endothelium-dependent hyperpolarization in mice. J Exp Med 205(9): 2053–2063. doi:10.1084/jem.20080106

    Google Scholar 

  • Territo PR, Burggren WW (1998) Cardio-respiratory ontogeny during chronic carbon monoxide exposure in the clawed frog Xenopus laevis. J Exp Biol 201(Pt 9): 1461–1472

    Google Scholar 

  • Thi MM, Tarbell JM, Weinbaum S, Spray DC (2004) The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci USA 101(47): 16483–16488. doi:10.1073/pnas.0407474101

    Google Scholar 

  • Thoma R (1893) Untersuchungen uber die Histogenese und Histomechanik des Gefasssystems. Ferdinand Enke, Stuttgart

    Google Scholar 

  • Travasso RD, Poire EC, Castro M, Rodriguez-Manzaneque JC, Hernandez-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS One 6(5): e19989. doi:10.1371/journal.pone.0019989

    Google Scholar 

  • Tsamis A, Cheng A, Nguyen TC, Langer F, Miller DC, Kuhl E (2012) Kinematics of cardiac growth: in vivo characterization of growth tensors and strains. J Mech Behav Biomed Mater 8: 165–177. doi:10.1016/j.jmbbm.2011.12.006

    Google Scholar 

  • Tsutsui M, Shimokawa H, Morishita T, Nakashima Y, Yanagihara N (2006) Development of genetically engineered mice lacking all three nitric oxide synthases. J Pharmacol Sci 102(2): 147–154

    Google Scholar 

  • Tulzer G, Arzt W, Franklin RC, Loughna PV, Mair R, Gardiner HM (2002) Fetal pulmonary valvuloplasty for critical pulmonary stenosis or atresia with intact septum. Lancet 360(9345): 1567–1568

    Google Scholar 

  • Tzima E, Del Pozo MA, Kiosses WB, Mohamed SA, Li S, Chien S, Schwartz MA (2002) Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J 21(24): 6791–6800

    Google Scholar 

  • Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20(17): 4639–4647. doi:10.1093/emboj/20.17.4639

    Google Scholar 

  • Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057): 426–431. doi:10.1038/nature03952

    Google Scholar 

  • Tzima E, Kiosses WB, del Pozo MA, Schwartz MA (2003) Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. J Biol Chem 278(33): 31020–31023. doi:10.1074/jbc.M301179200

    Google Scholar 

  • Uchida D, Onoue T, Begum NM, Kuribayashi N, Tomizuka Y, Tamatani T, Nagai H, Miyamoto Y (2009) Vesnarinone downregulates CXCR4 expression via upregulation of Kruppel-like factor 2 in oral cancer cells. Mol Cancer 8: 62

    Google Scholar 

  • Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3): 328–331

    Google Scholar 

  • Van der Heiden K, Groenendijk BC, Hierck BP, Hogers B, Koerten HK, Mommaas AM, Gittenberger-de Groot AC, Poelmann RE (2006) Monocilia on chicken embryonic endocardium in low shear stress areas. Dev Dyn 235(1): 19–28. doi:10.1002/dvdy.20557

    Google Scholar 

  • Van der Heiden K, Hierck BP, Krams R, de Crom R, Cheng C, Baiker M, Pourquie MJ, Alkemade FE, De Ruiter MC, Gittenberger-de Groot AC, Poelmann RE (2008) Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis. Atherosclerosis 196(2): 542–550. doi:10.1016/j.atherosclerosis.2007.05.030

    Google Scholar 

  • van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos-Hesselink JW (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58(21): 2241–2247. doi:10.1016/j.jacc.2011.08.025

    Google Scholar 

  • Vennemann P, Kiger KT, Lindken R, Groenendijk BC, Stekelenburg-de Vos S, ten Hagen TL, Ursem NT, Poelmann RE, Westerweel J, Hierck BP (2006) In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J Biomech 39(7): 1191–1200

    Google Scholar 

  • Vermot J, Forouhar AS, Liebling M, Wu D, Plummer D, Gharib M, Fraser SE (2009) Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol 7(11): e1000246. doi:10.1371/journal.pbio.1000246

    Google Scholar 

  • Villarreal G Jr, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, Garcia-Cardena G (2010) Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun 391(1): 984–989. doi:10.1016/j.bbrc.2009.12.002

    Google Scholar 

  • Wallitt EJ, Jevon M, Hornick PI (2007) Therapeutics of vein graft intimal hyperplasia: 100 years on. Ann Thorac Surg 84(1): 317–323. doi:10.1016/j.athoracsur.2007.02.035

    Google Scholar 

  • Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93(5): 741–753

    Google Scholar 

  • Wang KC, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam S, Wang N, Shyy JY, Li YS, Chien S (2010a) Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci USA 107(7): 3234–3239. doi:10.1073/pnas.0914825107

    Google Scholar 

  • Wang L, Zhang P, Wei Y, Gao Y, Patient R, Liu F (2011) A blood flow-dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos. Blood 118(15): 4102–4110. doi:10.1182/blood-2011-05-353235

    Google Scholar 

  • Wang W, Ha CH, Jhun BS, Wong C, Jain MK, Jin ZG (2010b) Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood 115(14): 2971–2979. doi:10.1182/blood-2009-05-224824

    Google Scholar 

  • Wang Y, Dur O, Patrick MJ, Tinney JP, Tobita K, Keller BB, Pekkan K (2009) Aortic arch morphogenesis and flow modeling in the chick embryo. Ann Biomed Eng 37(6): 1069–1081. doi:10.1007/s10439-009-9682-5

    Google Scholar 

  • Wang Y, Kaiser MS, Larson JD, Nasevicius A, Clark KJ, Wadman SA, Roberg-Perez SE, Ekker SC, Hackett PB, McGrail M, Essner JJ (2010c) Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137(18): 3119–3128. doi:10.1242/dev.048785

    Google Scholar 

  • Watton PN, Raberger NB, Holzapfel GA, Ventikos Y (2009) Coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples. J Biomech Eng 131(10): 101003. doi:10.1115/1.3192141

    Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9: 121–167. doi:10.1146/annurev.bioeng.9.060906.151959

    Google Scholar 

  • Weinstein BM, Stemple DL, Driever WD, Fishman MC (1995) Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nature Med 11: 1143–1147

    Google Scholar 

  • Wu W, Xiao H, Laguna-Fernandez A, Villarreal G Jr, Wang KC, Geary GG, Zhang Y, Wang WC, Huang HD, Zhou J, Li YS, Chien S, Garcia-Cardena G, Shyy JY (2011) Flow-dependent regulation of Kruppel-like factor 2 is mediated by microRNA-92a. Circulation 124(5): 633–641. doi:10.1161/CIRCULATIONAHA.110.005108

    Google Scholar 

  • Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM (2006) Live imaging of lymphatic development in the zebrafish. Nat Med 12(6): 711–716. doi:10.1038/nm1427

    Google Scholar 

  • Yashiro K, Shiratori H, Hamada H (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450(7167): 285–288. doi:10.1038/nature06254

    Google Scholar 

  • Yelbuz T, Choma M, Thrane L, Kirby M, Izatt J (2002) Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos. Circulation 106(22): 2771–2774

    Google Scholar 

  • Yoshisue H, Suzuki K, Kawabata A, Ohya T, Zhao H, Sakurada K, Taba Y, Sasaguri T, Sakai N, Yamashita S, Matsuzawa Y, Nojima H (2002) Large scale isolation of non-uniform shear stress-responsive genes from cultured human endothelial cells through the preparation of a subtracted cDNA library. Atherosclerosis 162(2): 323–334

    Google Scholar 

  • Zhang W, Kassab GS (2008) Remodeling of conduit arteries in hypertension and flow-overload obeys a minimum energy principle. J Biomech 41(11): 2567–2570

    Google Scholar 

  • Zhou J, Wang KC, Wu W, Subramaniam S, Shyy JY, Chiu JJ, Li JY, Chien S (2011) MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci USA 108(25): 10355–10360. doi:10.1073/pnas.1107052108

    Google Scholar 

  • Zhou Y, Kassab GS, Molloi S (1999) On the design of the coronary arterial tree: a generalization of Murray’s law. Phys Med Biol 44(12): 2929–2945

    Google Scholar 

  • Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, Becker MS, Zanetta L, Dejana E, Gasson JC, Tallquist MD, Iruela-Arispe ML (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3(6): 625–636. doi:10.1016/j.stem.2008.09.018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth L. Roman.

Additional information

Funding: R01HL079108 (awarded to B.L.R.) and American Heart Association 0765284U and NSF CAREER 0954465 (awarded to K.P.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roman, B.L., Pekkan, K. Mechanotransduction in embryonic vascular development. Biomech Model Mechanobiol 11, 1149–1168 (2012). https://doi.org/10.1007/s10237-012-0412-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0412-9

Keywords

Navigation