Skip to main content
Log in

Bioerosion along a bathymetric gradient in a cold-temperate setting (Kosterfjord, SW Sweden): an experimental study

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

In the cold-temperate setting of the Swedish Kosterfjord, a 2-year experiment was launched in order to assess bioerosion rates and to investigate the endolithic borer communities in relation to light availability (relative bathymetry), hydrography and exposure time. The inventory of microendolithic traces, studied by SEM analysis of epoxy resin casts of planted bivalve shells, yields diverse ichnocoenoses comprising a total of 21 traces produced by boring cyanobacteria (7), chlorophytes (4), fungi (6) and traces of uncertain affinity (4). The link between the endoliths (biotaxa) and the traces they leave (ichnotaxa) is evaluated by the study of the boring organisms in situ by transmission light microscopy of planted Iceland spar and bivalve shells. Additionally, the activity of various macroborers (foraminiferans, polychaetes, echinoids, gastropods and sponges) is documented, adding to a distinct diversity maximum at 7 m water depth. A highly condensed photic zonation, due to the high latitude (59°) and eutrophic conditions, is recorded by the measurement of the Photosynthetically Active Radiation (PAR) and is confirmed by the bathymetric range of the photic related ichnocoenoses. At 1 m water depth, a mature shallow euphotic ichnocoenosis dominated by cyanobacteria and at 7 m, a deep euphotic ichnocoenosis dominated by chlorophytes, respectively, is developed after as little as 12 months exposure. With the vanishing light availability from 15 m downwards, the ichnocoenoses development is significantly slowed and only immature dysphotic and aphotic borer communities (dominated by fungi) are encountered. Strong fluctuations of salinity (down to 8%) and temperature (0–20°C) in the euphotic zone indicate most phototrophs present to be considerably euryhaline and eurytherm, while most endolithic fungi appear preferentially in the deeper, more stable marine waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alderman DJ, Gareth Jones EB (1971) Physiological requirements of two marine Phycomycetes, Althornia crouchii and Ostracoblabe implexa. Trans Br Mycol Soc 57:213–225

    Google Scholar 

  • Akpan EB (1986) Depth distribution of endolithic algae from the Firth of Clyde: implications for delineation and subdivision of the photic zone. J Mar Biol Assoc UK 66:269–275

    Google Scholar 

  • Akpan EB, Farrow GE (1984) Shell-boring algae on the Scottish continental shelf: identification, distribution, bathymetric zonation. Trans Roy Soc Edinburgh Earth 75:1–12

    Google Scholar 

  • Batters EAL (1902) A catalogue of the British Marine algae. J Bot Suppl 40:1–107

    Google Scholar 

  • Beuck L, Freiwald A (2005) Bioerosion patterns in a deep-water Lophelia pertusa (Scleractinia) thicket (Propeller Mound, northern Porcupine Seabight). In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg New York, pp 915–936

    Google Scholar 

  • Bornet É, Flahault C (1888) Note sur deux nouveaux genres d'algues perforantes. J Botanique 2:161–165

    Google Scholar 

  • Bornet É, Flahault C (1889) Sur quelques plantes vivant dans le test calcaire des mollusques. Bull Sci Bot France 35:147–176, pl 6–12

    Google Scholar 

  • Bromley RG (1975) Comparative analysis of fossil and recent echinoid bioerosion. Palaeontology 18:725–739

    Google Scholar 

  • Bromley RG (1981) Concepts in ichnotaxonomy illustrated by small round holes in shells. Acta Geol Hisp 16:55–64

    Google Scholar 

  • Bromley RG (2004) A stratigraphy of marine bioerosion. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc London Spec Publ 228:455–481

  • Bromley RG, Martinell J (1991) Centrichnus, new ichnogenus for centrically patterned attachment scars on skeletal substrates. Bull Geol Soc Denmark 38:243–252

    Google Scholar 

  • Budd DA, Perkins RD (1980) Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments. J Sediment Petrol 50:881–904

    Google Scholar 

  • Caram B, Jónsson S (1972) Nouvelle inventaire des algues marines de l'Islande. Acta Bot Islandica 1:5–31

    Google Scholar 

  • Cavaliere AR, Alberte RS (1970) Fungi in animal shell fragments. J Elisha Mitchell Sci Soc 86:203–206

    Google Scholar 

  • Dahl GE (1978) On the existence of a deep countercurrent to the Norwegian Coastal Current in the Skagerrak. Tellus 30:552–556

    Google Scholar 

  • Ercegovic A (1927) Tri nova roda litofiskih cijanoiceja sa jadranske obale. Acta Bot 2:78–84

    Google Scholar 

  • Ercegovic A (1929) Sur quelques nouveux types des Cyanophycées lithophytes de la cote Adriatique. Arch Protistenk 66:164–174

    Google Scholar 

  • Ercegovic A (1932) Ekoloske i socioloske studije o litofitskim cijanoficejama sa Jugoslavenske obale Jadrana. Bull Int Acad Yougoslave Sci Math Nat 26:129–220

    Google Scholar 

  • Farrow GE, Fyfe JA (1988) Bioerosion and carbonate mud production on high-latitude shelves. Sediment Geol 60:281–297

    Article  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst L (ed) Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Akad Verlagsges, Leipzig, 1196 pp

    Google Scholar 

  • Gektidis M (1997) Vorkommen, Ökologie und Taxonomie von Mikrobohrorganismen in ausgewählten Riffbereichen um die Insel Lee Stocking Island (Bahamas) und One Tree Island (Australien). PhD Thesis, Johann Wolfgang Goethe Univ Frankfurt a. M., 276 pp

  • Glaub I (1994) Mikrobohrspuren in ausgewählten Ablagerungsr-äumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). Cour Forsch-Inst Senckenberg 174:1–324

    Google Scholar 

  • Glaub I (1999) Paleobathymetric reconstructions and fossil microborings. Bull Geol Soc Denmark 45:143–146

    Google Scholar 

  • Glaub I (2004) Recent and sub-recent microborings from the upwelling area off Mauritania (West Africa) and their implications for palaeoecology. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc London Spec Publ 228:63–77

  • Glaub I, Schmidt H (1994) Traces of endolithic microboring organisms in Triassic and Jurassic bioherms. Kaupia 4:103–112

    Google Scholar 

  • Glaub I, Vogel K (2004) The stratigraphic record of microborings. Fossils Strata 51:126–135

    Google Scholar 

  • Glaub I, Gektidis M, Vogel K (2002) Microborings from different North Atlantic shelf areas – variability of the euphotic zone extension and implications for paleodepth reconstructions. Cour Forsch-Inst Senckenberg 237:25–37

    Google Scholar 

  • Golubic S, Brent G, LeCampion T (1970) Scanning electron microscopy of endolithic algae and fungi using a multipurpose casting-embedding technique. Lethaia 3:203–209

    Google Scholar 

  • Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer, Berlin Heidelberg New York, pp 229–259

    Google Scholar 

  • Greuter W, McNeill J, Barrie FR, Burdet HM, Demoulin V, Filgueiras TS, Nicolson DH, Silva PC, Skog JE, Trehane P, Turland NJ, Hawksworth DL (2000) International Code of Botanical Nomenclature (Saint Louis Code). Proceedings of the 16th International Botany Congress St. Louis, Missouri, July–August 1999, Koelz Sci Books, Königstein, 474 pp

  • Höhnk W (1969) Über den pilzlichen Befall kalkiger Hartteile von Meerestieren. Ber Dt Wiss Komm 20:129–140

    Google Scholar 

  • Hook JE, Golubic S (1993) Microbial shell destruction in deep-sea mussels, Florida Escarpment. Mar Ecol 14:81–89

    Google Scholar 

  • International Commission on Zoological Nomenclature (1999) International Code of Zoological Nomenclature, 4th edn. Nat Hist Mus, London, 306 pp

    Google Scholar 

  • Jerlov NG (1970) Light – general introduction. In: Kinne O (ed) Marine ecology. Part 1. Environmental factors. Wiley Interscience, London, pp 95–102

    Google Scholar 

  • Kiene WE (1985) Biological destruction of experimental coral substrates at Lizard Island (Great Barrier Reef, Australia). Proceedings of the 5th International Coral Reef Congress, Tahiti, pp 339–344

  • Kornmann P (1959) Die heterogene Gattung Gomontia. I. Der Sporangiale Anteil, Codiolum polyrhizum. Helgoland Wiss Meer 6:229–238

    Article  Google Scholar 

  • Kornmann P (1960) Die heterogene Gattung Gomontia. II. Der fädige Anteil, Eugomontia sacculata nov. gen. nov. spec. Helgoland Wiss Meer 7:59–71

    Article  Google Scholar 

  • Kornmann P, Sahling P-H (1980) Ostreobium quekettii (Codiales, Chlorophyta). Helgoland Wiss Meer 34:115–122

    Article  Google Scholar 

  • Lagerheim G (1885) Codiolum polyrhizum n. sp. Ett bidrag till kännedomen om slätget Codiolum. Kongl Vetensk Akad Förh 42:21–31

    Google Scholar 

  • Lagerheim G (1886) Notes sur le Mastigocoleus, nouveau genre des algues marines de l´ordre des Phycochromacées. Notarisia 1:65–69

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S (1985) Hyella caespitosa Bornet et Flahault and Hyella balani Lehmann (Pleurocapsales, Cyanophyta): a comparative study. Arch Hydrobiol Suppl 71:119–184

    Google Scholar 

  • Lehmann E (1903) Über Hyella balani nov. spec. Nytt Mag Natruvid 41:77–87

    Google Scholar 

  • Liebau A (1984) Grundlagen der Ökobathymetrie. In: Luterbacher H (ed) Paläobathymetrie. Paläont Kursb 2:149–184

  • Littler MM, Littler DS, Blair SM, Norris JN (1985) Deepest known plant life discovered on an uncharted seamount. Science 227:57–59

    Google Scholar 

  • Lüning K (1985) Meeresbotanik: Verbreitung, Ökophysiologie und Nutzung der marinen Makroalgen. Thieme, Stuttgart, 375 pp

    Google Scholar 

  • Lukas KJ (1978) Depth distribution and form among common microboring algae from the Florida continental shelf. Geol Soc Am, Abstr Progr 10:448

    Google Scholar 

  • Lukas KJ, Golubic S (1981) New endolithic cyanophytes from the North Atlantic Ocean: I. Cyanosaccus piriformis gen. et sp. nov. J Phycol 17:224–229

    Article  Google Scholar 

  • Lukas KJ, Golubic S (1983) New endolithic cyanophytes from the North Atlantic Ocean. II. Hyella gigas Lukas & Golubic sp. nov. from the Florida Continental Margin. J Phycol 19:129–136

    Article  Google Scholar 

  • Lund S (1959) The marine algae of East Greenland. I. Taxonomic part. Meddel Grønland 156:247

    Google Scholar 

  • Nielsen R (1972) A study of the shell-boring marine algae around the Danish island Læsø. Bot Tidsskr 67:245–269

    Google Scholar 

  • Nielsen R (1980) A comparative study of five marine Chaetophoracea. Br Phycol J 15:131–138

    Google Scholar 

  • Nielsen R (1987) Marine algae within calcareous shells from New Zealand. New Zeal J Bot 25:425–438

    Google Scholar 

  • Nielsen R, Gunnarsson K (2001) Seaweeds of the Faroe Islands. An annotated checklist. Fródskaparrit 49:45–108

    Google Scholar 

  • Nielsen R, Kristiansen A, Mathiesen L, Mathiesen H (1995) Distributional index of the benthic marine macroalgae of the Baltic Sea area. Acta Bot Fenn 155:1–70

    Google Scholar 

  • Pari N, Peyrot-Clausade M, Le Campion-Alsumard T, Hutchings PA, Chazottes V, Golubic S, Le Campion J, Fontaine MF (1998) Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure. Mar Ecol Prog Ser 166:110–130

    Google Scholar 

  • Pari N, Peyrot-Clausade M, Hutchings PA (2002) Bioerosion of experimental substrates on high islands and atoll lagoons (French Polynesia) during 5 years of exposure. J Exp Mar Biol Ecol 276:109–127

    Article  Google Scholar 

  • Pedersen PM (1976) Marine benthic algae from southernmost Greenland. Meddel Grønland 199:1–80

    Google Scholar 

  • Porter D, Lingle WL (1992) Endolithic thraustochytrid marine fungi from planted shell fragments. Mycologia 84:289–299

    Google Scholar 

  • Radtke G (1991) Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. Cour Forsch-Inst Senckenberg 138:1–185

    Google Scholar 

  • Radtke G, Hofmann K, Golubic S (1997) A bibliographic overview of micro- and macroscopic bioerosion. Cour Forsch-Inst Senckenberg 201:307–340

    Google Scholar 

  • Rueness J, Brattegard T, Lein TE, Küfner Lein R, Pedersen A, Sørlie AC (2001) Class Chorophyceae (division Chlorophyta) – green algae (grønnalger). In: Brattegard T, Holthe T (eds) Distribution of marine, benthic macro-organisms in Norway – a tabulated catalogue. Res Rep 2001-2003, Dir Nat Management, Trondheim, pp 6–12

    Google Scholar 

  • Schmidt H (1992) Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich und bathymetrische Interpretation). Frankfurt Geowiss Arb A 12:1–228

    Google Scholar 

  • Schmidt H, Freiwald A (1993) Rezente gesteinsbohrende Kleinorganismen des norwegischen Schelfs. Nat Museum 123:149–155

    Google Scholar 

  • Svansson A (1975) Physical and chemical oceanography of the Skagerrak and the Kattegat. I. Open sea conditions. Rep Fish Board Swed Inst Mar Res 1:1–88

    Google Scholar 

  • Taylor WR (1957) Marine algae of the northeastern coast of North America. University of Michigan Press, 509 pp

  • Vogel K, Glaub I (2004) 450 Millionen Jahre Beständigkeit in der Evolution endolithischer Mikroorganismen? Sitzber Wiss Ges Johann-Wolfgang-Goethe-Univ Frankfurt 42:1–42

    Google Scholar 

  • Vogel K, Marincovich LJ (2004) Palaeobathymetric implications of microborings in tertiary strata of Alaska, USA. Palaeogeogr Palaeoclimatol Palaeoecol 206:1–20

    Article  Google Scholar 

  • Vogel K, Bundschuh M, Glaub I, Hofmann K, Radtke G, Schmidt H (1995) Hard substrate ichnocoenoses and their relations to light intensity and marine bathymetry. N Jb Geol Paläontol Abh 195:49–61

    Google Scholar 

  • Vogel K, Balog S-J, Bundschuh M, Gektidis M, Glaub I, Krutschinna J, Radtke G (1999) Bathymetrical studies in fossil reefs, with microendoliths as paleoecological indicators. Profil 16:181–191

    Google Scholar 

  • Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33:190–204

    Article  Google Scholar 

  • Voigt E (1971) Fremdskulpturen an Steinkernen von Polychäten-Bohrgängen aus der Maastrichter Tuffkreide. Paläontol Z 45:144–153

    Google Scholar 

  • Voigt E (1977) On grazing traces produced by the radula of fossil and recent gastropods and chitons. In: Crimes TP, Harper JC (eds) Trace fossils. Seel House Press, Liverpool, pp 335–346

    Google Scholar 

  • Wilson MA (2005) Marine bioerosion bibliography. http://www. wooster.edu/geology/bioerosion/bioerosion.html

  • Wilkinson M (1974) Investigations on the autecology of Eugomontia sacculata Kornm., a shell-boring alga. J Exp Mar Biol Ecol 16:19–27

    Article  Google Scholar 

  • Wilkinson M (1975) The occurence of shell-boring Phaeophila species in Britain. Br Phycol J 10:235–240

    Google Scholar 

  • Wisshak M, Freiwald A, Lundälv T, Gektidis M (2005) The physical niche of bathyal Lophelia pertusa in a non-bathyal setting: environmental controls and palaeoecological implications. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg New York, pp 979–1001

    Google Scholar 

  • Young HR, Nelson CS (1988) Endolithic biodegradation of cool-water skeletal carbonates on Scott shelf, northwestern Vancouver Island, Canada. Sediment Geol 60:251–267

    Article  Google Scholar 

  • Zebrowski G (1937) New genera of Cladochytriaceae. Ann Mo Bot Gard 23:553–564

    Google Scholar 

  • Zeff ML, Perkins RD (1979) Microbial alteration of Bahamian deep-sea carbonates. Sedimentology 26:175–201

    Google Scholar 

Download references

Acknowledgements

We are indebted to Ingrid Glaub (Frankfurt a. M.) and Stjepko Golubic (Boston) for their competent reviews and fruitful correspondence. We gratefully acknowledge the TMBL staff for their logistic as well as scientific support, especially Hans G. Hannsson, Lisbeth Jonsson, Bertil Rex and Lillemor Svärdh. Furthermore, we would like to thank Ruth Nielsen (Kopenhagen) and Gudrun Radtke (Wiesbaden) for their helpful comments. This work is financially supported by the German Research Council (DFG-FR 1134/5-1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Wisshak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wisshak, M., Gektidis, M., Freiwald, A. et al. Bioerosion along a bathymetric gradient in a cold-temperate setting (Kosterfjord, SW Sweden): an experimental study. Facies 51, 93–117 (2005). https://doi.org/10.1007/s10347-005-0009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-005-0009-1

Keywords

Navigation