Skip to main content

Advertisement

Log in

Advanced Computational Framework for the Automatic Analysis of the Acetabular Morphology from the Pelvic Bone Surface for Hip Arthroplasty Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

2D- and 3D-based innovative methods for surgical planning and simulation systems in orthopedic surgery have emerged enabling the interactive or semi-automatic identification of the clinical landmarks (CL) on the patient individual virtual bone anatomy. They enable the determination of the optimal implant sizes and positioning according to the computed CL, the visualization of the virtual bone resections and the simulation of the overall intervention prior to surgery. The virtual palpation of CL, highly dependent upon the examiner’s expertise, was proved to be time consuming and to suffer from considerable inter-observer variability. In this article, we propose a fully automatic algorithmic framework that processes the pelvic bone surface, integrating surface curvature analysis, quadric fitting, recursive clustering and clinical knowledge, aiming at computing the main parameters of the acetabulum. The performance of the method was evaluated using pelvic bone surfaces reconstructed from CT scans of cadavers and subjects with pathological conditions at the hip joint. The repeatability error of the automated computation of acetabular center, size and axis parameters was less than 1 mm, 0.5 mm, and 1.5°, respectively. The computed parameters were in agreement (<1.5 mm; <0.5 mm; <3.0°) with the corresponding reference parameters manually identified in the original datasets by medical experts. According to our results, the proposed method is put forward to improve the degree of automation of image/model-based planning systems for hip surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. Given two surfaces A and B with different number of points, the Hausdorff distance between A and B is obtained as: H(A,B) = max(h(A,B),h(B,A)) where h(A,B) = max(min(d(a,b)) for all a in A, b in B, where d(a,b) is a L2 norm.

Abbreviations

SPSS:

Surgical planning and simulation systems

KJA:

Knee joint arthroplasty

HJA:

Hip joint arthroplasty

CL:

Clinical landmarks

CT:

Computer tomography

MR:

Magnetic resonance

ROI:

Region of interest

3D:

Three-dimensional

IAS:

Internal acetabular surface

ARS:

Acetabular rim surface

AC:

Acetabular center

AR:

Acetabular radius

ArT:

Acetabular roof thickness

AaD:

Acetabular axis direction

RMS:

Root mean squared

GC:

Geometric center

CF:

Computational framework

References

  1. Cerveri, P., M. Marchente, W. Bartels, K. Corten, J. P. Simon, and A. Manzotti. Automated method for computing the morphological and clinical parameters of the proximal femur using heuristic modeling techniques. Ann. Biomed. Eng. 38(5):1752–1766, 2010.

    Article  PubMed  Google Scholar 

  2. Cerveri, P., M. Marchente, W. Bartels, K. Corten, J. P. Simon, and A. Manzotti. Towards automatic computer-aided knee surgery by innovative methods for processing the femur surface model. Int. J. Med. Robot. Comput. Assist. Surg. 6(3):350–361, 2010.

    Article  Google Scholar 

  3. Cerveri, P., M. Marchente, A. Manzotti, and N. Confalonieri. Determination of the Whiteside line on the femur surface model by fitting high-order polynomial functions to the cross-section profiles of the intercondylar fossa. Comput. Aided Surg. 16(2):71–85, 2011.

    Article  PubMed  Google Scholar 

  4. Cheng, Y. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8):790–799, 1995.

    Article  Google Scholar 

  5. Comaniciu, D., and P. Meer. Mean shift: a robust approach towards feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24:603–619, 2002.

    Article  Google Scholar 

  6. Dandachli, W., S. U. Islam, R. Tippett, M. A. Hall-Craggs, and J. D. Witt. Analysis of acetabular version in the native hip: comparison between 2D axial CT and 3D CT measurements. Skeletal Radiol. 2010. doi:10.1007/s00256-010-1065-3.

  7. Davila, J. A., M. J. Kransdorf, and G. P. Duffy. Surgical planning of total hip arthroplasty: accuracy of computer-assisted EndoMap software in predicting component size. Skeletal Radiol. 35(6):390–393, 2006.

    Article  PubMed  Google Scholar 

  8. Dong, C., and G. Wang. Curvatures estimation on triangular mesh. J. Zhejiang Univ. Sci. 6A(S.1):128–136, 2005.

    Article  Google Scholar 

  9. Ehrhardt, J., H. Handels, W. Plotz, and S. J. Poppl. Atlas-based recognition of anatomical structures and landmarks and the automatic computation of orthopaedic parameters to support the virtual planning of hip operations. Methods Inf. Med. 43(4):391–397, 2004.

    PubMed  CAS  Google Scholar 

  10. Fraldi, M., L. Esposito, G. Perrella, A. Cutolo, and S. C. Cowin. Topological optimization in hip prosthesis design. Biomech. Model Mechanobiol. 9:389–402, 2010.

    Article  PubMed  CAS  Google Scholar 

  11. Frangi, A. F., D. RÄuckert, J. A. Schnabel, and W. J. Niessen. Construction of multiple-object three-dimensional statistical shape models: application to cardiac modelling. IEEE Trans. Med. Imaging 21(9):1151–1166, 2002.

    Article  PubMed  Google Scholar 

  12. González Della Valle, A., F. Comba, N. Taveras, and E. A. Salvati. The utility and precision of analogue and digital preoperative planning for total hip arthroplasty. Int. Orthop. 32:289–294, 2008.

    Article  PubMed  Google Scholar 

  13. Gu, D., Y. Chen, K. Dai, S. Zhang, and J. Yuan. The shape of the acetabular cartilage surface: a geometric morphometric study using three-dimensional scanning. Med. Eng. Phys. 30:1024–1031, 2008.

    Article  PubMed  Google Scholar 

  14. Jun, Y., and K. Choi. Design of patient-specific hip implants based on the 3D geometry of the human femur. Adv. Eng. Softw. 41:537–554, 2010.

    Article  Google Scholar 

  15. Kalteis, T., M. Handel, T. Herold, L. Perlick, C. Paetzel, and J. Grifka. Position of the acetabular cup accuracy of radiographic calculation compared to CT-based measurement. Eur. J. Radiol. 58(2):294–300, 2006.

    Article  PubMed  Google Scholar 

  16. Kang, L., T. Scott, F. Freddie, H. Christopher, and Z. Xudong. Automating analyses of the distal femur articular geometry based on three-dimensional surface data. Ann. Biomed. Eng. 38(9):2928–2936, 2010.

    Article  Google Scholar 

  17. Kao, F. C., K. Y. Hsu, Y. K. Tu, and M. C. Chou. Surgical planning and procedures for difficult total knee arthroplasty. Orthopedics 32(11):810, 2009.

    PubMed  Google Scholar 

  18. Koenderink, J. J., and A. J. Van Doorn. Surface shape and curvature scales. Image Vis. Comput. 10(8):557–565, 1992.

    Article  Google Scholar 

  19. Köhnlein, W., R. Ganz, F. M. Impellizzeri, and M. Leunig. Acetabular morphology: implications for joint-preserving surgery. Clin. Orthop. Relat. Res. 467(3):682–691, 2009.

    Article  PubMed  Google Scholar 

  20. Lamecker, H., M. Seebass, H.-C. Hege, and P. Deuflhard. A 3D statistical shape model of the pelvic bone for segmentation. SPIE 5370:1341–1351, 2004.

    Article  Google Scholar 

  21. Laporte, S., W. Skalli, J. A. de Guise, F. Lavaste, and D. Mitton. A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Comput. Methods Biomech. Biomed. Eng. 6(1):1–6, 2003.

    Article  CAS  Google Scholar 

  22. Lee, K., and S. B. Goodman. Current state and future of joint replacements in the hip and knee. Expert Rev. Med. Devices 5(3):383–393, 2008.

    Article  PubMed  Google Scholar 

  23. Matthews, F., P. Messmer, V. Raikov, G. A. Wanner, A. L. Jacob, P. Regazzoni, and A. Egli. Patient-specific three-dimensional composite bone models for teaching and operation planning. J. Digit. Imaging 22(5):473–482, 2009.

    Article  PubMed  Google Scholar 

  24. Menschik, F. The hip joint as a conchoids shape. J. Biomech. 30(9):971–973, 1997.

    Article  PubMed  CAS  Google Scholar 

  25. Murray, D. W. The definition and measurement of acetabular orientation. J. Bone Joint Surg. Br. 75(2):228–232, 1993.

    PubMed  CAS  Google Scholar 

  26. Niu, Q., X. Chi, M. C. Leu, and J. Ochoa. Image processing, geometric modeling and data management for development of a virtual bone surgery system. Comput. Aided Surg. 13(1):30–40, 2008.

    PubMed  Google Scholar 

  27. Oddy, M., M. Jones, C. Pendegrass, J. Pilling, and J. Wimhurst. Assessment of reproducibility and accuracy in templating hybrid total hip arthroplasty using digital radiographs. J. Bone Joint Surg. Br. 88:581–585, 2006.

    Article  PubMed  CAS  Google Scholar 

  28. Saikko, V., and O. Calonius. Slide track analysis of the relative motion between femoral head and acetabular cup in walking and in hip simulators. J. Biomech. 35:455–464, 2002.

    Article  PubMed  Google Scholar 

  29. Steinberg, E. L., A. Menahem, and S. Dekel. Preoperative planning of total hip replacement using the TraumaCad™ system. Arch. Orthop. Trauma Surg. 130:1429–1432, 2010.

    Article  PubMed  Google Scholar 

  30. Subburaj, K., B. Ravi, and M. Agarwal. 3D shape reasoning for identifying anatomical landmarks. Comput. Aided Des. Appl. 5(1–4):153–160, 2008.

    Google Scholar 

  31. Subburaj, K., B. Ravi, and M. Agarwal. Automated identification of anatomical landmarks on 3D bone models reconstructed from CT scan images. Comput. Med. Imaging Graph 33(5):359–368, 2009.

    Article  PubMed  CAS  Google Scholar 

  32. Suero, E. M., T. Hüfner, T. Stübig, C. Krettek, and M. Citak. Use of a virtual 3D software for planning of tibial plateau fracture reconstruction. Injury 41(6):589–591, 2010.

    Article  PubMed  Google Scholar 

  33. Taddei, F., M. Ansaloni, D. Testi, and M. Viceconti. Virtual palpation of skeletal landmarks with multimodal display interfaces. Med. Inform. Internet Med. 32(3):191–198, 2007.

    Article  PubMed  Google Scholar 

  34. Van Sint Jan S. Introducing anatomical and physiological accuracy in computerized anthropometry for increasing the clinical usefulness of modeling systems. Crit Rev Phys Rehab Med. 17(4):249–274, 2005.

  35. Viceconti, M., R. Lattanzi, B. Antonietti, S. Paderni, R. Olmi, A. Sudanese, and A. Toni. CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning. Med. Eng. Phys. 25:371–377, 2003.

    Article  PubMed  CAS  Google Scholar 

  36. Wong, K. C., S. M. Kumta, K. S. Leung, K. W. Ng, E. W. K. Ng, and K. S. Lee. Integration of CAD/CAM planning into computer assisted orthopaedic surgery. Comput. Aided Surg. 15(4–6):65–74, 2010.

    Article  PubMed  CAS  Google Scholar 

  37. Worz, S., and K. Rohr. Localization of anatomical point landmarks in 3D medical images by fitting 3D parametric intensity models. Med. Image Anal. 10:41–58, 2006.

    Article  PubMed  Google Scholar 

  38. Xi, J., X. Hu, and Y. Jin. Shape analysis and parameterized modeling of hip joint. Trans. ASME 3(9):260–265, 2003.

    Google Scholar 

  39. Yau, W. P., A. Leung, K. G. Liu, C. H. Yan, L. L. Wong, and K. Y. Chiu. Interobserver and intra-observer errors in obtaining visually selected anatomical landmarks during registration process in non-image-based navigation-assisted total knee arthroplasty. J. Arthroplasty 22(8):1150–1161, 2007.

    Google Scholar 

  40. Zhang, X., G. Li, Y. Xiong, and F. He. 3D mesh segmentation using mean-shifted curvature. In: Proceeding of the 5th International Conference on Advances in Geometric Modeling and Processing (GMP’08), edited by F. Chen, and B. Jüttler. Berlin, Heidelberg: Springer-Verlag, LNCS 4975, 2008, pp. 465–474.

  41. Zheng, G. Statistically deformable 2D/3D registration for estimating post-operative cup orientation from a single standard AP X-ray radiograph. Ann. Biomed. Eng. 38(9):2910–2927, 2010.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Cerveri.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Appendix: Mean-Shifted Curvature

Appendix: Mean-Shifted Curvature

Let \( N_{\text{F}} \left( v \right) \) and \( {\textbf{n}}\left( f \right) \) be a set of all triangular faces adjacent to vertex \( v \in V \), with V the set of the h mesh vertices, and the normal direction to the face f, respectively. The vertex normal \( {\textbf{n}}\left( v \right) \) is defined as the weighted average of the normal directions \( \left\{ {{\textbf{n}}\left( f \right)} \right\} \) of its adjacent faces. Considering \( {\textbf{c}}\left( f \right) \) the centroid of the face f, the vertex normal can be computed as:

$$ {\textbf{n}}\left( v \right) = \frac{{\sum\limits_{{f \in N_{\text{F}} }} {w\left( f \right){\textbf{n}}\left( f \right)} }}{{\left\| {\sum\limits_{{f \in N_{\text{F}} }} {w\left( f \right){\textbf{n}}\left( f \right)} } \right\|}}\quad {\text{with }}w\left( f \right) = \frac{1}{{\left\| {{\textbf{c}}\left( f \right) - v} \right\|}} $$
(A1)

For \( v_{j} \in N_{V} \left( v \right) \), the set of n vertices adjacent to v (1-ring), a unit tangent t j associated to v j is defined as the normalization of the projection of \( v_{j} - v \) on the tangent plane of v. The normal curvature of v along t j can be then approximated by:

$$ k_{n} \left( {{\textbf{t}}_{j} } \right) = - \frac{{\langle v_{j} - v,{\textbf{n}}\left( {v_{j} } \right) - {\textbf{n}}\left( v \right)\rangle }}{{\left\| {v_{j} - v} \right\|}}\quad {\text{for}}\,{\textbf{t}}_{j} \left( {j = 1,2, \ldots ,m} \right) $$
(A2)

Without loss of generality, let \( k_{n} \left( {{\mathbf{t}}_{1} } \right) \) be the maximum among all these values. Denoting \( \theta_{j} \) the angle between t j and t 1, \( k_{n} \left( {{\mathbf{t}}_{j} } \right) \) can be then expressed as

$$ k_{n} \left( {{\mathbf{t}}_{j} } \right) = a\cos^{2} \theta_{j} + b\cos \theta_{j} \sin \theta_{j} + c\sin^{2} \theta_{j} $$
(A3)

where \( a = k_{n} \left( {{\mathbf{t}}_{1} } \right) \) and b and c can be estimated by least square fitting. The Gaussian \( k_{G} \), the mean \( k_{m} \), and the two principle curvatures k 1 and k 2 at the vertex v can be computed as:

$$ k_{G} = ac - \frac{1}{4}b^{2} ,\;k_{m} = \frac{1}{2}\left( {a + c} \right),\;k_{1,2} = k_{m} \pm \sqrt {k_{m}^{2} - k_{G} } $$
(A4)

In order to amplify the difference between convex and concave regions the following curvature combination is utilized:

$$ k_{c} = \frac{2}{\pi }{ \arctan }\left( {\frac{{k_{1} + k_{2} }}{{k_{1} - k_{2} }}} \right) $$
(A5)

The mean-shifted curvature refinement takes its root from the general mean-shift algorithm.4,5 Given a sample point of a feature space, a mean-shift algorithm firstly estimates the density of the feature space, then evaluates the gradient of the density function, and finally moves the sample points along their gradient direction. A standard mean-shift algorithm is generally guaranteed to be convergent. The mean-shifted curvature refinement40 in this case involves two components in the feature space \( \Upomega \), namely the 2D manifold, embedded in 3D space, and the 1D curvature, as \( \Upomega = \left\{ {\left( {v,k_{c} \left( v \right)} \right):v \in V,k_{c} \in K} \right\} \).

A generalized mean-shift density function is defined as:

$$ d\left( {v,k_{c} \left( v \right)} \right) = \frac{1}{{ha^{2} b}}\sum\limits_{{v_{j} \in V}} {F_{a} \left( {\frac{{v - v_{j} }}{a}} \right)} F_{b} \left( {\frac{{k_{c} \left( v \right) - k_{c} \left( {v_{j} } \right)}}{b}} \right) $$
(A6)

where a and b are constants representing the bandwidth, F a and F b are two kernel functions and h in the number of vertices of the mesh. In order to simplify the density function and without losing generality, the kernel F a can be setup to a flat function, i.e., \( F_{a} \left( x \right) = 1\quad {\text{for}}\left\| x \right\| \le t\,{\text{and}}\,0 \) otherwise. Aiming at updating the curvature of a vertex with that of its 1-ring vertices leads to set t be 1. By setting a = 2, (Eq. A6) simplifies further in:

$$ d\left( {k_{c} \left( v \right)} \right) = \frac{1}{4hb}\sum\limits_{{v_{j} \in N_{V} \left( v \right)}} {F_{b} \left( {\frac{{k_{c} \left( v \right) - k_{c} \left( {v_{j} } \right)}}{b}} \right)} $$
(A7)

Setting \( F_{b} \left( x \right) = pf_{b} \left( {\left\| x \right\|^{2} } \right) \), with p a normalization factor assuring that \( F_{b} \left( x \right) \) integrates to 1, the gradient of the curvature density of Eq. (A7) assumes the following shape:

$$ \nabla d\left( {k_{c} \left( v \right)} \right) = p\frac{{m\left( {k_{c} \left( v \right)} \right)}}{{2hb^{3} }}\sum\limits_{{v_{j} \in N_{V} \left( v \right)}} {g_{b} } \left( {\frac{{\left\| {k_{c} \left( v \right) - k_{c} \left( {v_{j} } \right)} \right\|^{2} }}{b}} \right) $$
(A8)

where \( g_{b} \left( x \right) = - F_{b}^{\prime } \left( x \right) \) and

$$ m\left( {k_{c} \left( v \right)} \right) = - k_{c} \left( v \right) + \frac{{\sum\limits_{{v_{j} \in N_{V} \left( v \right)}} {k_{c} \left( {v_{j} } \right)g_{b} \left( {\left\| {\frac{{k_{c} \left( v \right) - k_{c} \left( {v_{j} } \right)^{2} }}{b}} \right\|} \right)} }}{{\sum\limits_{{v_{j} \in N_{V} \left( v \right)}} {g_{b} \left( {\frac{{\left\| {k_{c} \left( v \right) - k_{c} \left( {v_{j} } \right)} \right\|^{2} }}{b}} \right)} }} $$
(A9)

is the curvature mean-shift at the vertex v, which does not depend on the number of vertices h in the mesh. The curvature \( k_{c} \left( v \right) \) is iteratively refined as \( k_{c}^{t + 1} \left( v \right) = k_{c}^{t} \left( v \right) + m\left( {k_{c}^{t} \left( v \right)} \right) \) until \( \left| {k_{c}^{t + 1} \left( v \right) - kctv} \right. \) is less than a user specified threshold \( \in \). By convenience, the Epanechnikov kernel \( F_{b} \left( x \right) = \left( {0.75\left( {1 - x^{2} } \right)} \right) \), proposed successfully in kernel smoothing,4 was utilized in this development. The value b and \( \in \) were heuristically setup equal to 10−5 and 10−4, respectively. From 5 to 10 iterations were sufficient to refine the curvature at all the mesh vertices.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerveri, P., Marchente, M., Chemello, C. et al. Advanced Computational Framework for the Automatic Analysis of the Acetabular Morphology from the Pelvic Bone Surface for Hip Arthroplasty Applications. Ann Biomed Eng 39, 2791–2806 (2011). https://doi.org/10.1007/s10439-011-0375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0375-5

Keywords

Navigation