Skip to main content

Advertisement

Log in

The role of FAS to ezrin association in FAS-mediated apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The acquisition of a cell polarity is a crucial requirement for a number of cellular functions, including apoptosis. Cell polarization is an actin cytoskeleton-driven process, through a connection between actin and an increasing number of membrane proteins. The major actors in this connection are ezrin, radixin and moesin, a family of proteins with a high level of homology. Their structure includes an epitope that links to membrane proteins and the other that binds to the actin molecule. In this review we discuss recent data showing that the Fas linkage to the actin cytoskeleton is ezrin mediated and it is an essential requirement for susceptibility to the Fas-mediated apoptosis. The ezrin region responsible of Fas binding consists of 18 aminoacids mapped on the median lobe of the ezrin FERM domain. This binding is specific and of key importance in the control of cell homeostasis. Moreover, Fas-ezrin co-localization, ezrin phosphorylation and early acquisition of susceptibility to Fas-mediated apoptosis, may have a role in some human diseases in which programmed cell death seems to be a central pathogenetic mechanism, such as AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fais S, Capobianchi MR, Abbate I, et al. Unidirectional budding of HIV-1 at the site of cell-to-cell contact is associated with co-polarization of intercellular adhesion molecules and HIV-1 viral matrix protein. AIDS 1995; 9: 329–335.

    PubMed  Google Scholar 

  2. del Pozo MA, Nieto M, Serrador JM, et al. The two poles of the lymphocyte: Specialized cell compartments for migration and recruitment. Cell Adhes Commun 1998; 6: 125–133.

    PubMed  Google Scholar 

  3. Sanchez-Madrid F, del Pozo MA. Leukocyte polarization in cell migration and immune interactions. Embo J 1999; 18: 501–511.

    Article  PubMed  Google Scholar 

  4. Gomez-Mouton C, Abad JL, Mira E, et al. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci USA 2001; 98: 9642–9647.

    Article  PubMed  Google Scholar 

  5. Tsukita S, Yonemura S. Cortical actin organization: Lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem 1999; 274: 34507–34510.

    Article  PubMed  Google Scholar 

  6. Berryman M, Franck Z, Bretscher A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci 1993; 105: 1025–1043.

    PubMed  Google Scholar 

  7. Yonemura S, Nagafuchi A, Sato N, et al. Concentration of an integral membrane protein, CD43 (leukosialin, sialophorin), in the cleavage furrow through the interaction of its cytoplasmic domain with actin-based cytoskeletons. J Cell Biol 1993; 120: 437–449.

    Article  PubMed  Google Scholar 

  8. Yonemura S, Tsukita S. Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins. J Cell Biol 1999; 145: 1497–1509.

    Article  PubMed  Google Scholar 

  9. Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: Integrators at the cell cortex. Nat Rev Mol Cell Biol 2002; 3: 586–599.

    Article  PubMed  Google Scholar 

  10. Gautreau A, Louvard D, Arpin M. ERM proteins and NF2 tumor suppressor: The Yin and Yang of cortical actin organization and cell growth signaling. Curr Opin Cell Biol 2002; 14: 104–109.

    Article  PubMed  Google Scholar 

  11. Ivetic A, Ridley AJ. Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology 2004; 112: 165–176.

    Article  PubMed  Google Scholar 

  12. Reczek D, Berryman M, Bretscher A. Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol 1997; 139: 169–179.

    Article  PubMed  Google Scholar 

  13. Denker SP, Huang DC, Orlowski J, et al. Direct binding of the Na—H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol Cell 2000; 6: 1425–1436.

    Article  PubMed  Google Scholar 

  14. Morales FC, Takahashi Y, Kreimann EL, et al. Ezrin-radixin-moesin (ERM)-binding phosphoprotein 50 organizes ERM proteins at the apical membrane of polarized epithelia. Proc Natl Acad Sci USA 2004; 101: 17705–17710.

    Article  PubMed  Google Scholar 

  15. Itoh K, Sakakibara M, Yamasaki S, et al. Cutting edge: Negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp-EBP50-ERM assembly. J Immunol 2002; 168: 541–544.

    PubMed  Google Scholar 

  16. Gary R, Bretscher A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell 1995; 6: 1061–1075.

    PubMed  Google Scholar 

  17. Magendantz M, Henry MD, Lander A, et al. Interdomain interactions of radixin in vitro. J Biol Chem 1995; 270: 25324–25327.

    Article  PubMed  Google Scholar 

  18. Niggli V, Andreoli C, Roy C, et al. Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett 1995; 376: 172–176.

    Article  PubMed  Google Scholar 

  19. Yonemura S, Matsui T, Tsukita S. Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: An essential role for polyphosphoinositides in vivo. J Cell Sci 2002; 115: 2569–2580.

    PubMed  Google Scholar 

  20. Fievet BT, Gautreau A, Roy C, et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol 2004; 164: 653–659.

    Article  PubMed  Google Scholar 

  21. Bretscher A. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J Cell Biol 1989; 108: 921–930.

    Article  PubMed  Google Scholar 

  22. Fazioli F, Wong WT, Ullrich SJ, et al. The ezrin-like family of tyrosine kinase substrates: Receptor-specific pattern of tyrosine phosphorylation and relationship to malignant transformation. Oncogene 1993; 8: 1335–1345.

    PubMed  Google Scholar 

  23. Chen J, Doctor RB, Mandel LJ. Cytoskeletal dissociation of ezrin during renal anoxia: Role in microvillar injury. Am J Physiol 1994; 267: C784–C795.

    PubMed  Google Scholar 

  24. Crepaldi T, Gautreau A, Comoglio PM, et al. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol 1997; 138: 423–434.

    Article  PubMed  Google Scholar 

  25. Wu YX, Uezato T, Fujita M. Tyrosine phosphorylation and cellular redistribution of ezrin in MDCK cells treated with pervanadate. J Cell Biochem 2000; 79: 311–321.

    Article  PubMed  Google Scholar 

  26. Heiska L, Carpen O. Src phosphorylates Ezrin at tyrosine 477 and induces a phosphospecific association between Ezrin and a Kelch-repeat protein family member. J Biol Chem 2004 [Epub ahead of print].

  27. Autero M, Heiska L, Ronnstrand L, et al. Ezrin is a substrate for Lck in T cells. FEBS Lett 2003; 535: 82–86.

    Article  PubMed  Google Scholar 

  28. Peter ME, Scaffidi C, Medema JP, et al. The death receptors. Results Probl Cell Differ 1999; 23: 25–63.

    PubMed  Google Scholar 

  29. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J 1995; 14: 5579–5588.

    PubMed  Google Scholar 

  30. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. Embo J 1998; 17: 1675–1687.

    Article  PubMed  Google Scholar 

  31. Parlato S, Giammarioli AM, Logozzi M, et al. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: A novel regulatory mechanism of the CD95 apoptotic pathway. Embo J 2000; 19: 5123–5134.

    Article  PubMed  Google Scholar 

  32. Subauste MC, Von Herrath M, Benard V, et al. Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J Biol Chem 2000; 275: 9725–9733.

    Article  PubMed  Google Scholar 

  33. Bokoch GM. Regulation of cell function by Rho family GTPases. Immunol Res 2000; 21: 139–148.

    Article  PubMed  Google Scholar 

  34. Fais S, Malorni W. Leukocyte uropod formation and membrane/cytoskeleton linkage in immune interactions. J Leukoc Biol 2003; 73: 556–563.

    Article  PubMed  Google Scholar 

  35. Algeciras-Schimnich A, Shen L, Barnhart BC, et al. Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 2002; 22: 207–220.

    Article  PubMed  Google Scholar 

  36. Fiorentini C, Matarrese P, Straface E, et al. Rho-dependent cell spreading activated by E.coli cytotoxic necrotizing factor 1 hinders apoptosis in epithelial cells. Cell Death Differ 1998; 5: 921–929.

    Article  PubMed  Google Scholar 

  37. Brown DA, London E. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem 2000; 275: 17221–17224.

    Article  PubMed  Google Scholar 

  38. Mayor S, Rao M. Rafts: Scale-dependent, active lipid organization at the cell surface. Traffic 2004; 5: 231–240.

    Article  PubMed  Google Scholar 

  39. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997; 387: 569–572.

    PubMed  Google Scholar 

  40. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1: 31–39.

    Article  PubMed  Google Scholar 

  41. Fullekrug J, Simons K. Lipid rafts and apical membrane traffic. Ann N Y Acad Sci 2004; 1014: 164–169.

    Article  PubMed  Google Scholar 

  42. He HT, Lellouch A, Marguet D. Lipid rafts and the initiation of T cell receptor signaling. Semin Immunol 2005; 17: 23–33.

    Article  PubMed  Google Scholar 

  43. Garcia A, Cayla X, Fleischer A, et al. Rafts: A simple way to control apoptosis by subcellular redistribution. Biochimie 2003; 85: 727–731.

    Article  PubMed  Google Scholar 

  44. Eramo A, Sargiacomo M, Ricci-Vitiani L, et al. CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells. Eur J Immunol 2004; 34: 1930–1940.

    Article  PubMed  Google Scholar 

  45. Muppidi JR, Tschopp J, Siegel RM. Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 2004; 21: 461–465.

    Article  PubMed  Google Scholar 

  46. Millan J, Montoya MC, Sancho D, et al. Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 2002; 99: 978–984.

    Article  PubMed  Google Scholar 

  47. Giammarioli AM, Garofalo T, Sorice M, et al. GD3 glycosphingolipid contributes to Fas-mediated apoptosis via association with ezrin cytoskeletal protein. FEBS Lett 2001; 506: 45–50.

    Article  PubMed  Google Scholar 

  48. Hueber AO, Bernard AM, Herincs Z, et al. An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep 2002; 3: 190–196.

    Article  PubMed  Google Scholar 

  49. Hueber AO. Role of membrane microdomain rafts in TNFR-mediated signal transduction. Cell Death Differ 2003; 10: 7–9.

    Article  PubMed  Google Scholar 

  50. Gulbins E, Grassme H. Ceramide and cell death receptor clustering. Biochim Biophys Acta 2002; 1585: 139–145.

    PubMed  Google Scholar 

  51. Gulbins E, Kolesnick R. Raft ceramide in molecular medicine. Oncogene 2003; 22: 7070–7077.

    Article  PubMed  Google Scholar 

  52. Garcia-Ruiz C, Colell A, Morales A, et al. Trafficking of ganglioside GD3 to mitochondria by tumor necrosis factor-alpha. J Biol Chem 2002; 277: 36443–36448.

    Google Scholar 

  53. Misasi R, Sorice M, Garofalo T, et al. Overexpression of lymphocytic GD3 ganglioside and presence of anti-GD3 antibodies in patients with HIV infection. AIDS Res Hum Retroviruses 2000; 16: 1539–1549.

    Article  PubMed  Google Scholar 

  54. De Maria R, Lenti L, Malisan F, et al. Requirement for GD3 ganglioside in CD95-and ceramide-induced apoptosis. Science 1997; 277: 1652–1655.

    Article  PubMed  Google Scholar 

  55. De Maria R, Rippo MR, Schuchman EH, et al. Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med 1998; 187: 897–902.

    Article  PubMed  Google Scholar 

  56. Delmas D, Rebe C, Micheau O, et al. Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells. Oncogene 2004; 23: 8979–8986.

    Article  PubMed  Google Scholar 

  57. Lozupone F, Lugini L, Matarrese P, et al. Identification and relevance of the CD95-binding domain in the N-terminal region of ezrin. J Biol Chem 2004; 279: 9199–9207.

    Article  PubMed  Google Scholar 

  58. Smith WJ, Nassar N, Bretscher A, et al. Structure of the active N-terminal domain of Ezrin. Conformational and mobility changes identify keystone interactions. J Biol Chem 2003; 278: 4949–4956.

    Article  PubMed  Google Scholar 

  59. Smith WJ, Cerione RA. Crystallization and preliminary crystallographic analysis of the ezrin FERM domain. Acta Crystallogr D Biol Crystallogr 2002; 58: 1359–1361.

    Article  PubMed  Google Scholar 

  60. Hamada K, Shimizu T, Matsui T, et al. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. Embo J 2000; 19: 4449–4462.

    Article  PubMed  Google Scholar 

  61. Pearson MA, Reczek D, Bretscher A, et al. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 2000; 101: 259–270.

    Article  PubMed  Google Scholar 

  62. Edwards SD, Keep NH. The 2.7 A crystal structure of the activated FERM domain of moesin: An analysis of structural changes on activation. Biochemistry 2001; 40: 7061–7068.

    PubMed  Google Scholar 

  63. Turunen O, Sainio M, Jaaskelainen J, et al. Structure-function relationships in the ezrin family and the effect of tumor-associated point mutations in neurofibromatosis 2 protein. Biochim Biophys Acta 1998; 1387: 1–16.

    PubMed  Google Scholar 

  64. Barnhart BC, Alappat EC, Peter ME. The CD95 type I/type II model. Semin Immunol 2003; 15: 185–193.

    Article  PubMed  Google Scholar 

  65. Klas C, Debatin KM, Jonker RR, et al. Activation interferes with the APO-1 pathway in mature human T cells. Int Immunol 1993; 5: 625–630.

    PubMed  Google Scholar 

  66. Lagresle C, Bella C, Daniel PT, et al. Regulation of germinal center B cell differentiation. Role of the human APO-1/Fas (CD95) molecule. J Immunol 1995; 154: 5746–5756.

    PubMed  Google Scholar 

  67. Suda T, Hashimoto H, Tanaka M, et al. Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med 1997; 186: 2045–2050.

    Article  PubMed  Google Scholar 

  68. Alderson MR, Tough TW, Davis-Smith T, et al. Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 1995; 181: 71–77.

    Article  PubMed  Google Scholar 

  69. Brunner T, Mogil RJ, LaFace D, et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 1995; 373: 441–444.

    Article  PubMed  Google Scholar 

  70. Li-Weber M, Krammer PH. Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin Immunol 2003; 15: 145–157.

    Article  PubMed  Google Scholar 

  71. Marrack P, Kappler J. Control of T cell viability. Annu Rev Immunol 2004; 22: 765–787.

    Article  PubMed  Google Scholar 

  72. Fais S. Importance of the state of activation and/or differentiation of CD4+ T cells in AIDS pathogenesis. Trends Immunol 2002; 23: 128–129.

    Article  PubMed  Google Scholar 

  73. Lawn SD, Butera ST, Folks TM. Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection. Clin Microbiol Rev 2001; 14: 753–777, table of contents.

    Article  PubMed  Google Scholar 

  74. De Milito A, Titanji K, Zazzi M. Surrogate markers as a guide to evaluate response to antiretroviral therapy. Curr Med Chem 2003; 10: 349–365.

    PubMed  Google Scholar 

  75. Katsikis PD, Wunderlich ES, Smith CA, et al. Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J Exp Med 1995; 181: 2029–2036.

    Article  PubMed  Google Scholar 

  76. Finkel TH, Tudor-Williams G, Banda NK, et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV-and SIV-infected lymph nodes. Nat Med 1995; 1: 129–134.

    Article  PubMed  Google Scholar 

  77. Gougeon ML. Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 2003; 3: 392–404.

    Article  PubMed  Google Scholar 

  78. Westendorp MO, Frank R, Ochsenbauer C, et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995; 375: 497–500.

    Article  PubMed  Google Scholar 

  79. Krieg J, Hunter T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J Biol Chem 1992; 267: 19258–19265.

    PubMed  Google Scholar 

  80. Perez OD, Kinoshita S, Hitoshi Y, et al. Activation of the PKB/AKT pathway by ICAM-2. Immunity 2002; 16: 51–65.

    Article  PubMed  Google Scholar 

  81. Thuillier L, Hivroz C, Fagard R, et al. Ligation of CD4 surface antigen induces rapid tyrosine phosphorylation of the cytoskeletal protein ezrin. Cell Immunol 1994; 156: 322–331.

    Article  PubMed  Google Scholar 

  82. Luciani F, Matarrese P, Giammarioli AM, et al. CD95/phosphorylated ezrin association underlies HIV-1 GP120/IL-2-induced susceptibility to CD95(APO-1/Fas)-mediated apoptosis of human resting CD4(+)T lymphocytes. Cell Death Differ 2004; 11: 574–582.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fais MD, PhD.

Additional information

Angelo De Milito was supported by a grant from the Swedish Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fais, S., De Milito, A. & Lozupone, F. The role of FAS to ezrin association in FAS-mediated apoptosis. Apoptosis 10, 941–947 (2005). https://doi.org/10.1007/s10495-005-0478-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-0478-2

Keywords

Navigation