Skip to main content
Log in

Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Nerve tissue engineering requires suitable precursor cells as well as the necessary biochemical and physical cues to guide neurite extension and tissue development. An ideal scaffold for neural regeneration would be both fibrous and electrically conductive. We have contrasted the growth and neural differentiation of mouse embryonic stem cells on three different aligned nanofiber scaffolds composed of poly l-lactic acid supplemented with either single- or multi-walled carbon-nanotubes. The addition of the nanotubes conferred conductivity to the nanofibers and promoted mESC neural differentiation as evidenced by an increased mature neuronal markers expression. We propose that the conductive scaffold could be a useful tool for the generation of neural tissue mimics in vitro and potentially as a scaffold for the repair of neural defects in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chao TI, Xiang S, Chen CS, Chin WC et al (2009) Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem Biophys Res Commun 384(4):426–430

    Article  PubMed  CAS  Google Scholar 

  • Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12(36):4751–4770

    Article  PubMed  CAS  Google Scholar 

  • Colbert D (2003) Single-wall nanotubes: a new option for conductive plastics and engineering polymers. Plastics Additive & Compounding. Carbon Nanotechnologies, Inc. January/February

  • Collins PG, Avouris P (2000) Nanotubes for electronics. Sci Am 283(6):62–69

    Article  PubMed  CAS  Google Scholar 

  • Dalby MJ, Gadegaard N, Tare R, Andar A et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003

    Article  PubMed  CAS  Google Scholar 

  • Dekker A, Reitsma K, Beugeling T, Bantjes A et al (1991) Adhesion of endothelial cells and adsorption of serum proteins on gas plasma-treated polytetrafluoroethylene. Biomaterials 12(2):130–138

    Article  PubMed  CAS  Google Scholar 

  • George PM, Lyckman AW, LaVan DA, Hegde A et al (2005) Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 26(17):3511–3519

    Article  PubMed  CAS  Google Scholar 

  • Jun I, Jeong S, Shin H (2009) The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. Biomaterials 30(11):2038–2047

    Article  PubMed  CAS  Google Scholar 

  • Kam N, Jan E, Kotov N (2008) Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett 9(1):273–278

    Article  Google Scholar 

  • Kotwal A, Schmidt CE (2001) Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22(10):1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Lee MR, Kwon KW, Jung H, Kim HN et al (2010) Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31(15):4360–4366

    Article  PubMed  CAS  Google Scholar 

  • MacDonald RA, Voge CM, Kariolis M, Stegemann JP (2008) Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels. Acta Biomater 4(6):1583–1592

    Article  PubMed  CAS  Google Scholar 

  • McCullen S, Stano K, Stevens D, Roberts W et al (2007) Development, optimization, and characterization of electrospun poly (lactic acid) nanofibers containing multi-walled carbon nanotubes. J Appl Polym Sci 105(3):1668–1678

    Article  CAS  Google Scholar 

  • McNally T, Pötschke P, Halley P, Murphy M et al (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46(19):8222–8232

    Article  CAS  Google Scholar 

  • Moore AM, Macewan M, Santosa KB, Chenard KE et al (2011) A cellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve 44(2):221–234

    Article  PubMed  Google Scholar 

  • Potter W, Kalil RE, Kao WJ (2008) Biomimetic material systems for neural progenitor cell-based therapy. Front Biosci 13:806–821

    Article  PubMed  CAS  Google Scholar 

  • Salehi M, Pasbakhsh P, Soleimani M, Abbasi M et al (2009) Repair of spinal cord injury by co-transplantation of embryonic stem cell-derived motor neuron and olfactory ensheathing cell. Iran Biomed J 13(3):125–135

    PubMed  CAS  Google Scholar 

  • Schmidt C, Shastri V, Vacanti J, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Nat Acad Sci USA 94(17):8948

    Article  PubMed  CAS  Google Scholar 

  • Shao S, Zhou S, Li L, Li J et al (2011) Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 32(11):2821–2833

    Article  PubMed  CAS  Google Scholar 

  • Siemionow M, Bozkurt M, Zor F (2010) Regeneration and repair of peripheral nerves with different biomaterials: review. Microsurgery 30(7):574–588

    Article  PubMed  Google Scholar 

  • Sridharan I, Kim T, Wang R (2009) Adapting collagen/CNT matrix in directing hESC differentiation. Biochem Biophys Res Commun 381(4):508–512

    Article  PubMed  CAS  Google Scholar 

  • Sung J, Kim H, Jin H, Choi H et al (2004) Nanofibrous membranes prepared by multiwalled carbon nanotube/poly (methyl methacrylate) composites. Macromolecules 37(26):9899–9902

    Article  CAS  Google Scholar 

  • Tay C, Gu H, Leong W, Yu H et al (2010) Cellular behavior of human mesenchymal stem cells cultured on single-walled carbon nanotube film. Carbon 48(4):1095–1104

    Article  CAS  Google Scholar 

  • Thies RS, Zhang YW, Denham J (2006) Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Dev 15(6):943–952

    Article  PubMed  Google Scholar 

  • Voge CM, Kariolis M, MacDonald RA, Stegemann JP (2008) Directional conductivity in SWNT collagen-fibrin composite biomaterials through strain-induced matrix alignment. J Biomed Mater Res A 86(1):269–277

    PubMed  Google Scholar 

  • Xie J, Willerth SM, Li X, Macewan MR et al (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30(3):354–362

    Article  PubMed  CAS  Google Scholar 

  • Xue S, Yin G (2006) Proton exchange membranes based on poly (vinylidene fluoride) and sulfonated poly (ether ether ketone). Polymer 47(14):5044–5049

    Article  CAS  Google Scholar 

  • Yao L, Shanley L, McCaig C, Zhao M (2008) Small applied electric fields guide migration of hippocampal neurons. J Cell Physiol 216(2):527–535

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Rouabhia M, Wang Z, Roberge C et al (2007) Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif Organs 31(1):13–22

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabiri, M., Soleimani, M., Shabani, I. et al. Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds. Biotechnol Lett 34, 1357–1365 (2012). https://doi.org/10.1007/s10529-012-0889-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0889-4

Keywords

Navigation