Skip to main content
Log in

Developmental neurotoxicity of cadmium on enzyme activities of crucial offspring rat brain regions

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is an environmental contaminant known to exert significant neurotoxic effects on both humans and experimental animals. The aim of this study was to shed more light on the effects of gestational (in utero) and lactational maternal exposure to Cd (50 ppm of Cd as Cd-chloride in the drinking water) on crucial brain enzyme activities in important rat offspring brain regions (frontal cortex, hippocampus, hypothalamus, pons and cerebellum). Our study provides a brain region-specific view of the changes in the activities of three crucial brain enzymes as a result of the developmental neurotoxicity of Cd. Maternal exposure to Cd during both gestation and lactation results into significant changes in the activities of acetylcholinesterase and Na+,K+-ATPase in the frontal cortex and the cerebellum of the offspring rats, as well as in a significant increase in the hippocampal Mg2+-ATPase activity. These brain-region-specific findings underline the need for further research in the field of Cd-induced developmental neurotoxicity. Deeper understanding of the mechanisms underlying the neurodevelopmental deficits taking place due to in utero and early age exposure to Cd could shed more light on the causes of its well-established cognitive implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abib RT, Peres KC, Barbosa AM, Peres TV, Bernardes A, Zimmermann LM, Quincozes-Santos A, Fiedler HD, Leal RB, Farina M, Gottfried C (2011) Epigallocatechin-3-gallate protects rat brain mitochondria against cadmium-induced damage. Food Chem Toxicol 49:2618–2623

    Article  PubMed  CAS  Google Scholar 

  • Ahammadsahib KI, Ramamurthi R, Dusaiah D (1987) Mechanism of inhibition of rat brain (Na+–K+)-stimulated adenosine triphosphatase reaction by cadmium and methyl mercury. J Biochem Toxicol 2:169–180

    Article  PubMed  CAS  Google Scholar 

  • Amara S, Douki T, Garrel C, Favier A, Ben Rhouma K, Sakly M, Abdelmelek H (2011) Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus. Toxicol Ind Health 27:99–106

    Article  PubMed  CAS  Google Scholar 

  • Andersson H, Petersson-Grawé K, Lindqvist E, Luthman J, Oskarsson A, Olson L (1997) Low-level cadmium exposure of lactating rats causes alterations in brain serotonin levels in the offspring. Neurotoxicol Teratol 19:105–115

    Article  PubMed  CAS  Google Scholar 

  • Antonio MT, Corpas I, Leret ML (1999) Neurochemical changes in newborn rat’s brain after gestational cadmium and lead exposure. Toxicol Lett 104:1–9

    Article  PubMed  CAS  Google Scholar 

  • Antonio MT, Corredor L, Leret ML (2003) Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 143:331–340

    Article  PubMed  CAS  Google Scholar 

  • Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144:247–261

    Article  PubMed  CAS  Google Scholar 

  • Bogdanski DF, Tissari A, Brodie BB (1968) Role of sodium, potassium, ouabain and reserpine in uptake, storage and metabolism of biogenic amines in synaptosomes. Life Sci 7:419–428

    Article  PubMed  CAS  Google Scholar 

  • Bowler K, Tirri R (1974) The temperature characteristics of synaptic membrane ATPases from immature and adult rat brain. J Neurochem 23:611–613

    Article  PubMed  CAS  Google Scholar 

  • Carageorgiou H, Tzotzes V, Pantos C, Mourouzis C, Zarros A, Tsakiris S (2004) In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase, (Na+,K+)-ATPase and Mg2+-ATPase activities: protection by l-cysteine. Basic Clin Pharmacol Toxicol 94:112–118

    Article  PubMed  CAS  Google Scholar 

  • Carageorgiou H, Tzotzes V, Sideris A, Zarros A, Tsakiris S (2005) Cadmium effects on brain acetylcholinesterase activity and antioxidant status of adult rats: modulation by zinc, calcium and l-cysteine co-administration. Basic Clin Pharmacol Toxicol 97:320–324

    Article  PubMed  CAS  Google Scholar 

  • Chetty CS, Cooper A, McNeil C, Rajanna B (1992) The effects of cadmium in vitro on adenosine triphosphatase system and protection by thiol reagents in rat brain microsomes. Arch Environ Contam Toxicol 22:456–458

    Article  PubMed  CAS  Google Scholar 

  • Chow ES, Hui MN, Lin CC, Cheng SH (2008) Cadmium inhibits neurogenesis in zebrafish embryonic brain development. Aquat Toxicol 87:157–169

    Article  PubMed  CAS  Google Scholar 

  • Council EEC (1986) EEC Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Off J Eur Union L358:1–28

    Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Fasitsas CD, Theocharis SE, Zoulas D, Chrissimou S, Deliconstantinos G (1991) Time-dependent cadmium-neurotoxicity in rat brain synaptosomal plasma membranes. Comp Biochem Physiol C 100:271–275

    Article  PubMed  CAS  Google Scholar 

  • Fowler BA (2009) Monitoring of human populations for early markers of cadmium toxicity: a review. Toxicol Appl Pharmacol 238:294–300

    Article  PubMed  CAS  Google Scholar 

  • Geula C, Mesulam MM, Kuo CC, Tokuno H (1995) Postnatal development of cortical acetylcholinesterase-rich neurons in the rat brain: permanent and transient patterns. Exp Neurol 134:157–178

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves JF, Fiorenza AM, Spanevello RM, Mazzanti CM, Bochi GV, Antes FG, Stefanello N, Rubin MA, Dressler VL, Morsch VM, Schetinger MR (2010) N-Acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact 186:53–60

    Article  PubMed  Google Scholar 

  • Gonçalves JF, Duarte MM, Fiorenza AM, Spanevello RM, Mazzanti CM, Schmatz R, Bagatini MD, Antes FG, Costa P, Abdalla FH, Dressler VL, Morsch VM, Schetinger MR (2012a) Hematological indices and activity of NTPDase and cholinesterase enzymes in rats exposed to cadmium and treated with N-acetylcysteine. Biometals 25:1195–1206

    Article  PubMed  Google Scholar 

  • Gonçalves JF, Nicoloso FT, da Costa P, Farias JG, Carvalho FB, da Rosa MM, Gutierres JM, Abdalla FH, Pereira JS, Dias GR, Barbosa NB, Dressler VL, Rubin MA, Morsch VM, Schetinger MR (2012b) Behavior and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes. Food Chem Toxicol 50:3709–3718

    Article  PubMed  Google Scholar 

  • Gonçalves JF, Spanevello RM, Fiorenza AM, Mazzanti CM, Bagatini MD, da Rosa CS, Becker LV, da Costa P, Abdalla FH, Morsch VM, Schetinger MR (2013) NTPDase and 5′-nucleotidase activities from synaptosomes and platelets of rats exposed to cadmium and treated with N-acetylcysteine. Int J Dev Neurosci 31:69–74

    Article  PubMed  Google Scholar 

  • Gupta A, Gupta A, Murthy RC, Thakur SR, Dubey MP, Chandra SV (1990) Comparative neurotoxicity of cadmium in growing and adult rats after repeated administration. Biochem Int 21:97–105

    PubMed  CAS  Google Scholar 

  • Gupta A, Gupta A, Chandra SV (1991) Gestational cadmium exposure and brain development: a biochemical study. Ind Health 29:65–71

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Gupta A, Shukla GS (1995) Development of brain free radical scavenging system and lipid peroxidation under the influence of gestational and lactational cadmium exposure. Hum Exp Toxicol 14:428–433

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16:710–715

    Article  PubMed  CAS  Google Scholar 

  • Hernández J (1987) Brain Na+,K+-ATPase activity possibly regulated by a specific serotonin receptor. Brain Res 408:399–402

    Article  PubMed  Google Scholar 

  • Hoane MR (2005) Treatment with magnesium improves reference memory but not working memory while reducing GFAP expression following traumatic brain injury. Restor Neurol Neurosci 23:67–77

    PubMed  CAS  Google Scholar 

  • Holloway WR Jr, Thor DH (1988a) Cadmium exposure in infancy: effects on activity and social behaviors of juvenile rats. Neurotoxicol Teratol 10:135–142

    Article  PubMed  CAS  Google Scholar 

  • Holloway WR Jr, Thor DH (1988b) Social memory deficits in adult male rats exposed to cadmium in infancy. Neurotoxicol Teratol 10:193–197

    Article  PubMed  CAS  Google Scholar 

  • Hrdina PD, Peters DA, Singhal RL (1976) Effects of chronic exposure to cadmium, lead and mercury of brain biogenic amines in the rat. Res Commun Chem Pathol Pharmacol 15:483–493

    PubMed  CAS  Google Scholar 

  • Hussain T, Ali MM, Chandra SV (1985) Effect of cadmium exposure on lipids, lipid peroxidation and metal distribution in rat brain regions. Ind Health 23:199–205

    Article  PubMed  CAS  Google Scholar 

  • Insausti R, Cebada-Sánchez S, Marcos P (2010) Postnatal development of the human hippocampal formation. Adv Anat Embryol Cell Biol 206:1–86

    Article  PubMed  Google Scholar 

  • Jaarsma D, Ruigrok TJ, Caffé R, Cozzari C, Levey AI, Mugnaini E, Voogd J (1997) Cholinergic innervation and receptors in the cerebellum. Prog Brain Res 114:67–96

    Article  PubMed  CAS  Google Scholar 

  • Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  Google Scholar 

  • Kaufer D, Friedman A, Seidman S, Soreq H (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393:373–377

    Article  PubMed  CAS  Google Scholar 

  • Klegeris A, Korkina LG, Greenfield SA (1995) A possible interaction between acetylcholinesterase and dopamine molecules during autoxidation of the amine. Free Radic Biol Med 18:223–230

    Article  PubMed  CAS  Google Scholar 

  • Konecki J, Słowiński J, Harabin-Słowińska M, Helewski K, Głowacka M, Wyrobiec G (2003) RNA and protein synthesis in different organs of rat offspring after chronic cadmium exposure during pregnancy. Int J Occup Med Environ Health 16:75–79

    PubMed  Google Scholar 

  • Lafuente A, González-Carracedo A, Cabaleiro T, Romero A, Esquifino AI (2005) Toxic effects of cadmium on GABA and taurine content in different brain areas of adult male rats. J Physiol Biochem 61:439–446

    Article  PubMed  CAS  Google Scholar 

  • Liapi C, Stolakis V, Zarros A, Zissis KM, Botis J, Al-Humadi H, Tsakiris S (2013) Gestational exposure to cadmium alters crucial offspring rat brain enzyme activities: the role of cadmium-free lactation. Environ Toxicol Pharmacol 36:835–839

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lukawski K, Nieradko B, Sieklucka-Dziuba M (2005) Effects of cadmium on memory processes in mice exposed to transient cerebral oligemia. Neurotoxicol Teratol 27:575–584

    Article  PubMed  CAS  Google Scholar 

  • Magour S, Cumpelik O, Paulus M (1979) Effect of cadmium and copper on monoamine oxidase type A and B in brain and liver mitochondria. J Clin Chem Clin Biochem 17:777–780

    PubMed  CAS  Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34:213–215

    Article  PubMed  CAS  Google Scholar 

  • Méndez-Armenta M, Villeda-Hernández J, Barroso-Moguel R, Nava-Ruíz C, Jiménez-Capdeville ME, Ríos C (2003) Brain regional lipid peroxidation and metallothionein levels of developing rats exposed to cadmium and dexamethasone. Toxicol Lett 144:151–157

    Article  PubMed  Google Scholar 

  • Meyer EM, Cooper JR (1981) Correlations between Na+,K+-ATPase activity and acetylcholine release in rat cortical synaptosomes. J Neurochem 36:467–475

    Article  PubMed  CAS  Google Scholar 

  • Minami A, Takeda A, Nishibaba D, Takefuta S, Oku N (2001) Cadmium toxicity in synaptic neurotransmission in the brain. Brain Res 894:336–339

    Article  PubMed  CAS  Google Scholar 

  • Modi HR, Katyare SS (2009) Cadmium exposure-induced alterations in the lipid/phospholipids composition of rat brain microsomes and mitochondria. Neurosci Lett 464:108–112

    Article  PubMed  CAS  Google Scholar 

  • Murthy RC, Ali MM, Chandra SV (1986) Effects of in utero exposure to cadmium on the brain biogenic amine levels and tissue metal distribution in rats. Ind Health 24:15–21

    Article  PubMed  CAS  Google Scholar 

  • Murthy RC, Saxena DK, Sunderaraman V, Chandra SV (1987) Cadmium induced ultrastructural changes in the cerebellum of weaned and adult rats. Ind Health 25:159–162

    Article  PubMed  CAS  Google Scholar 

  • Newman EL, Gupta K, Climer JR, Monaghan CK, Hasselmo ME (2012) Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 6:24

    Article  PubMed  Google Scholar 

  • Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200

    Article  PubMed  CAS  Google Scholar 

  • Pari L, Murugavel P (2007) Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats. Toxicology 234:44–50

    Article  PubMed  CAS  Google Scholar 

  • Provias JP, Ackerley CA, Smith C, Becker LE (1994) Cadmium encephalopathy: a report with elemental analysis and pathological findings. Acta Neuropathol 88:583–586

    Article  PubMed  CAS  Google Scholar 

  • Rajanna B, Hobson M, Bansal SK, Desaiah D (1983) Effect of cadmium chloride on rat brain synaptosomal ATPases. Toxicol Lett 18:331–336

    Article  PubMed  CAS  Google Scholar 

  • Rajanna B, Hobson M, Boykin M, Chetty CS (1990a) Effects of chronic treatment with cadmium on ATPases, uptake of catecholamines, and lipid peroxidation in rat brain synaptosomes. Ecotoxicol Environ Saf 20:36–41

    Article  PubMed  CAS  Google Scholar 

  • Rajanna B, Hobson M, Harris L, Ware L, Chetty CS (1990b) Effects of cadmium and mercury on Na+,K+-ATPase and uptake of 3H-dopamine in rat brain synaptosomes. Arch Int Physiol Biochim 98:291–296

    Article  PubMed  CAS  Google Scholar 

  • Romine CB, Reynolds CR (2005) A model of the development of frontal lobe functioning: findings from a meta-analysis. Appl Neuropsychol 12:190–201

    Article  PubMed  Google Scholar 

  • Sałaga-Pylak M, Pikuła A, Wójtowicz-Chomicz K, Sygit K, Klatka M, Kowal M, Borzecki A (2010) The influence of intracerebral streptozotocin and/or cadmium on memory processes in mice exposed to transient cerebral oligemia. J Toxicol Environ Health A 73:1159–1165

    Article  PubMed  Google Scholar 

  • Sanui H, Rubin H (1982) The role of magnesium in cell proliferation and transformation. In: Boynton AL, McKochan WL, Whitfield JP (eds) Ions, Cell Proliferation and Cancer. Academic Press, New York, pp 517–537

    Google Scholar 

  • Sastry BS, Phillis JW (1977) Antagonism of biogenic amine-induced depression of cerebral cortical neurones by Na+,K+-ATPase in inhibitors. Can J Physiol Pharmacol 55:170–179

    Article  PubMed  CAS  Google Scholar 

  • Shaban NZ, Ali AE, Masoud MS (2003) Effect of cadmium and zinc ethanolamine complexes on rat brain monoamine oxidase-B activity in vitro. J Inorg Biochem 95:141–148

    Article  PubMed  CAS  Google Scholar 

  • Shah J, Pant HC (1991) Effect of cadmium on Ca2+ transport in brain microsomes. Brain Res 566:127–130

    Article  PubMed  CAS  Google Scholar 

  • Shukla GS, Hussain T, Chandra SV (1987) Possible role of regional superoxide dismutase activity and lipid peroxide levels in cadmium neurotoxicity: in vivo and in vitro studies in growing rats. Life Sci 41:2215–2221

    Article  PubMed  CAS  Google Scholar 

  • Shukla GS, Srivastava RS, Chandra SV (1988) Glutathione status and cadmium neurotoxicity: studies in discrete brain regions of growing rats. Fundam Appl Toxicol 11:229–235

    Article  PubMed  CAS  Google Scholar 

  • Shukla GS, Hussain T, Srivastava RS, Chandra SV (1989) Glutathione peroxidase and catalase in liver, kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal. Ind Health 27:59–69

    Article  PubMed  CAS  Google Scholar 

  • Shukla A, Shukla GS, Srimal RC (1996) Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol 15:400–405

    Article  PubMed  CAS  Google Scholar 

  • Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, Zhao X, Govindarajan A, Zhao MG, Zhuo M, Tonegawa S, Liu G (2010) Enhancement of learning and memory by elevating brain magnesium. Neuron 65:165–177

    Article  PubMed  CAS  Google Scholar 

  • Sorell TL, Graziano JH (1990) Effect of oral cadmium exposure during pregnancy on maternal and fetal zinc metabolism in the rat. Toxicol Appl Pharmacol 102:537–545

    Article  PubMed  CAS  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholinesterase – new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  PubMed  CAS  Google Scholar 

  • Swann AC (1984) (Na+,K+)-adenosine triphosphatase regulation by the sympathetic nervous system: effects of noradrenergic stimulation and lesions in vivo. J Pharmacol Exp Ther 228:304–311

    PubMed  CAS  Google Scholar 

  • Thatcher RW, Lester ML, McAlaster R, Horst R (1982) Effects of low levels of cadmium and lead on cognitive functioning in children. Arch Environ Health 37:159–166

    Article  PubMed  CAS  Google Scholar 

  • Tsakiris S (2001) Effects of l-phenylalanine on acetylcholinesterase and Na+,K+-ATPase activities in adult and aged rat brain. Mech Ageing Dev 122:491–501

    Article  PubMed  CAS  Google Scholar 

  • Tsakiris S, Angelogianni P, Schulpis KH, Behrakis P (2000) Protective effect of l-cysteine and glutathione on rat brain Na+,K+-ATPase inhibition induced by free radicals. Z Naturforsch C 55:271–277

    PubMed  CAS  Google Scholar 

  • Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9:445–448

    Article  PubMed  CAS  Google Scholar 

  • Webb CP, Nedergaard S, Giles K, Greenfield SA (1996) Involvement of the NMDA receptor in a non-cholinergic action of acetylcholinesterase in guinea-pig substantia nigra pars compacta neurons. Eur J Neurosci 8:837–841

    Article  PubMed  CAS  Google Scholar 

  • Whyte KA, Greenfield SA (2003) Effects of acetylcholinesterase and butyrylcholinesterase on cell survival, neurite outgrowth, and voltage-dependent calcium currents of embryonic ventral mesencephalic neurons. Exp Neurol 184:496–509

    Article  PubMed  CAS  Google Scholar 

  • Zarros A, Skandali N, Al-Humadi H, Liapi C (2008) Cadmium (Cd) as a carcinogenetic factor and its participation in the induction of lung cancer. Pneumon 21:172–177

    Google Scholar 

  • Zarros A, Kalopita K, Tsakiris S, Baillie GS (2013) Can acetylcholinesterase activity be considered as a reliable biomarker for the assessment of cadmium-induced neurotoxicity? Food Chem Toxicol 56:406–410

    Article  PubMed  CAS  Google Scholar 

  • Zhang YM, Liu XZ, Lu H, Mei L, Liu ZP (2009) Lipid peroxidation and ultrastructural modifications in brain after perinatal exposure to lead and/or cadmium in rat pups. Biomed Environ Sci 22:423–429

    Article  PubMed  Google Scholar 

Download references

Acknowledgments:

This study was funded by the National and Kapodistrian University of Athens. The authors wish to acknowledge their appreciation to Dr. Hussam Al-Humadi and Mr. Konstantinos M. Zissis for their assistance.

Conflict of interest

All authors declare that no conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stylianos Tsakiris or Charis Liapi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolakis, V., Tsakiris, S., Kalafatakis, K. et al. Developmental neurotoxicity of cadmium on enzyme activities of crucial offspring rat brain regions. Biometals 26, 1013–1021 (2013). https://doi.org/10.1007/s10534-013-9678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9678-3

Keywords

Navigation