Skip to main content
Log in

Analysis of predisposing factors for contamination of bone and tendon allografts

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Bone and tissue allografts are widely used in transplantation. The increasing demand for safe allografts must be met, while minimizing disease transmission. We analysed the incidence and potential risk factors of allograft contamination and the effectiveness of disinfection, by reviewing 22 years of tissue bank activity and 474 donor procurements. We also compared different disinfection procedures used over the 22 years. The overall contamination rate was 10.1%. Risk factors were related to the donor or procurement method. Immediate culture at the tissue recovery site diminished the rate of false positives by reducing later sample manipulation. High-virulence allograft contamination was mainly related to donor factors, while low-virulence contamination was related to procurement methods. Analysis of donor-related risk factors showed no statistical differences for age, sex, or cause of death. An intensive care unit stay was associated with less contamination with high-virulence microbes. Procurement in a setting other than an operating theatre was associated with higher contamination rate. Team experience reduced contamination. Pelvic and tendon allografts were most frequently contaminated. Proper disinfection considerably reduced the contamination rate to 3.6%. We conclude that procurement must be performed under aseptic conditions, with short delays, and by trained personnel. Grafts should be disinfected and packed as soon as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastasescou M, Cornu O, Banse X, König J, Delloye C (1998) Ethanol treatment of tendon allografts: a potential HIV inactivating procedure. Int Orthop 22:252–254

    Article  PubMed  CAS  Google Scholar 

  • Barrios RH, Leyes M, Amillo S, Oteiza C (1994) Bacterial contamination of allografts. Acta Orthop Belg 60:293–295

    PubMed  CAS  Google Scholar 

  • Best AJ, Nixon MF, Taylor GJ (2007) Brief exposure of 0.05% chlorhexidine does not impair non-osteoarthritic human cartilage metabolism. J Hosp Infect 67:67–71

    Article  PubMed  CAS  Google Scholar 

  • Bettin D, Dethloff M, Steinbeck J, Polster J (1994) Organization of a bone and tissue bank. Z Orthop Ihre Grenzgeb 132:453–458

    Article  PubMed  CAS  Google Scholar 

  • Bettin D, Harms C, Polster J, Niemeyer T (1998) High incidence of pathogenic microorganisms in bone allografts explanted in the morgue. Acta Orthop Scand 69:311–314

    Article  PubMed  CAS  Google Scholar 

  • Bohatyrewicz A, Klek R, Kaminski A et al (2006) Factors determining the contamination of bone tissue procured from cadaveric and multiorgan donors. Transpl Proc 38:301–304

    Article  CAS  Google Scholar 

  • Camiade C, Goldschmidt P, Koskas F et al (2001) Optimization of the resistance of arterial allografts to infection: comparative study with synthetic prostheses. Vasc Surg 15:186–196

    Article  CAS  Google Scholar 

  • Deijkers RL, Bloem R, Petit P, Brand R, Veen MR (1997) Contamination of bone allografts: analysis of incidence and predisposing factors. J Bone Jt Surg Br 79:161–166

    Article  CAS  Google Scholar 

  • Delloye C (2000) Bone banking in orthopaedic surgery. 55-020-E-10, Editions Scientifiques et Medicales Elsevier SAS, Paris

  • Delloye C, De Halleux J, Cornu O, Wegmann E, Buccafusca GC, Gigi J (1991) Organizational and investigational aspects of bone banking in Belgium. Acta Orthop Belg 57(2):27–34

    PubMed  Google Scholar 

  • Eastlund T (2006) Bacterial infection transmitted by human tissue allograft transplantation. Cell Tissue Bank 7:147–166

    Article  PubMed  Google Scholar 

  • European Association of Musculoskeletal Transplantation (1997) Common standards for musculo-skeletal tissue banking. Vienna

  • Hope PG, Kristinsson KG, Norman P, Elson RA (1989) Deep infection of cemented total hip arthroplasty caused by coagulase-negative staphylococci. J Bone Jt Surg Br 5:851–855

    Google Scholar 

  • Ibrahim T, Stafford H, Elser CN, Power RA (2004) Cadaveric allograft microbiology. Int Orthop 28:315–318

    Article  PubMed  CAS  Google Scholar 

  • Ivory JP, Thomas IH (1993) Audit of a bone bank. J Bone Jt Surg Br 75:355–357

    CAS  Google Scholar 

  • Jekeler LN, Thiéry J (2004) Combined intra- and extra-articular fresh frozen allograft for anterior cruciate ligament repair. Rev Chir Orthop Reparatrice Appar Mot 90:651–658

    Article  PubMed  Google Scholar 

  • Journeaux SF, Johnson N, Bryce SL, Friedman SJ, Sommerville SM, Morgan DA (1999) Bacterial contamination rates during bone allograft retrieval. J Arthroplast 14:677–681

    Article  CAS  Google Scholar 

  • Kälicke T, Schierholz J, Schlegel U et al (2006) Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: an in vitro and in vivo study. J Orthop Res 24:1622–1640

    Article  PubMed  Google Scholar 

  • Langone AJ, Helderman JH (2003) Disparity between solid-organ supply and demand. N Engl J Med 349:704–706

    Article  PubMed  Google Scholar 

  • Lord C, Gebhardt M, Tomford W, Mankin H (1988) Infection in bone allografts. Incidence, nature and treatment. J Bone Jt Surg Am 70:369–376

    CAS  Google Scholar 

  • Malinin TI, Martinez OV, Brown MD (1985) Banking of massive osteoarticular and intercalary bone allografts-12 years’ experience. Clin Orthop Relat Res 197:44–57

    PubMed  Google Scholar 

  • Malinin TI, Buck BE, Temple H, Martinez OV, Fox W (2003) Incidence of clostridial contamination in donors’musculoskeletal tissue. J Bone Jt Surg Br 85:1051–1054

    Article  CAS  Google Scholar 

  • Martinez OV, Buck BE, Malinin T, Hernandez M (2003) Blood and marrow cultures as indicators of bone contamination in cadaver donors. Clin Orthop Rel Res 409:317–324

    Article  Google Scholar 

  • Matas AJ, Sutherland DER (2005) The importance of innovative efforts to increase organ donation. JAMA 294:1691–1693

    Article  PubMed  CAS  Google Scholar 

  • Raad I, Reitzel R, Jiang Y, Chemaly RF, Dvorak T, Hachem R (2008) Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria. J Antimicrob Chemother 62:746–750

    Article  PubMed  CAS  Google Scholar 

  • Reading AD, Rooney P, Taylor GJ (2000) Quantitative assessment of the effect of 0.05% chlorhexidine on rat articular cartilage metabolism in vitro and in vivo. J Orthop Res 18:762–767

    Article  PubMed  CAS  Google Scholar 

  • Saegeman VS, Ectors NL, Lismont D, Verduyckt B, Verhaegen J (2009) Effectiveness of antibiotics and antiseptics on coagulase-negative staphylococci for the decontamination of bone allografts. Eur J Clin Microbiol Infect Dis 28:813–816

    Article  PubMed  CAS  Google Scholar 

  • Sanzen L, Walder M (1988) Antibiotic resistance of coagulase-negative staphylococci in an orthopaedic department. J Hosp Infect 2:103–108

    Article  Google Scholar 

  • Segur JM, Suso S, Garcia S, Combalia A, Ramon R (1998) Bone allograft contamination in multiorgan and tissue donors. Arch Orthop Trauma Surg 118:156–158

    Article  PubMed  CAS  Google Scholar 

  • Segur JM, Suso S, Garcia S, Combalia A, Farinas O (2000) The procurement team as a factor of bone allograft contamination. Cell Tissue Bank 1:117–119

    Article  PubMed  Google Scholar 

  • Tomford WW (1995) Transmission of disease through transplantation of musculoskeletal allografts. J Bone Jt Surg Am 77:1742–1754

    CAS  Google Scholar 

  • Tomford WW, Doppelt SH, Mankin HJ, Friedlaender GE (1983) 1983 bone bank procedures. Clin Orthop Relat Res 174:15–21

    PubMed  Google Scholar 

  • Tomford WW, Thongphasuk J, Mankin HJ, Ferraro MJ (1990) Frozen musculoskeletal allografts. A study of the clinical incidence and causes of infection associated with their use. J Bone Jt Surg Am 72:1137–1143

    CAS  Google Scholar 

  • Tunney MM, Ramage G, Patrick S, Nixon JR, Murphy PG, Gorman SP (1998) Antimicrobial susceptibility of bacteria isolated from orthopedic implants following revision hip surgery. Antimicrob Agents Chemother 11:3002–3005

    Google Scholar 

  • Van Huyssteen A, Bracey D (1999) Chlorhexidine and chondrolysis in the knee. J Bone Jt Surg Br 81:995–996

    Article  Google Scholar 

  • Veen MR (1994) Bone allografts. A study into bacterial contamination, sensitivity of cultures, decontamination, and contribution to postoperative infection. Thesis, Leiden University

  • Veen MR, Bloem R, Petit P (1994) Sensitivity and negative predictive value of swab cultures in Musculoskeletal allograft procurement. Clin Orthop Relat Res 300:259–263

    PubMed  Google Scholar 

  • Vehmeyer S, Wolkenfelt J, Deijkers RL, Petit P, Brand R, Bloem R (2002) Bacterial contamination in postmortem bone donors. Acta Orthop Scand 73:678–683

    Article  PubMed  Google Scholar 

  • Witsø E, Persen L, Løseth K, Bergh K (1999) Adsorption and release of antibiotics from morselized cancellous bone. In vitro studies of 8 antibiotics. Acta Orthop Scand 70:298–304

    Article  PubMed  Google Scholar 

  • Witsø E, Persen L, Benum P, Bergh K (2005) Cortical allograft as a vehicle for antibiotic delivery. Acta Orthop Scand 76:481–486

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Cornu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, T., Bigaré, E., Van Isacker, T. et al. Analysis of predisposing factors for contamination of bone and tendon allografts. Cell Tissue Bank 13, 421–429 (2012). https://doi.org/10.1007/s10561-011-9291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-011-9291-z

Keywords

Navigation