Skip to main content
Log in

The Blood–Brain Barrier Permeability of 18β-Glycyrrhetinic Acid, a Major Metabolite of Glycyrrhizin in Glycyrrhiza Root, a Constituent of the Traditional Japanese Medicine Yokukansan

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

18β-Glycyrrhetinic acid (GA) is a major metabolite of glycyrrhizin (GL), which is one of the components of glycyrrhiza root, a constituent herb of the traditional Japanese medicine yokukansan. It is well known that most GL is metabolized to GA in the intestine by bacteria. A previous in vitro study using cultured rat cortical astrocytes suggested that GA activates glutamate transport, which is a putative mechanism of the psychotropic effect of yokukansan. To activate the glutamate transport in the brain, GA must be absorbed into the blood after oral administration of yokukansan and then cross the blood–brain barrier (BBB) to reach the brain. However, there is no data on the BBB permeability of GA derived from yokukansan. In the present study, the BBB permeability of GA was investigated in both in vivo and in vitro studies. In the in vivo study, GA was detected in the plasma, brain, and cerebrospinal fluid of rats orally administered yokukansan. In the in vitro study using a BBB model composed of co-culture of endothelial cells, pericytes, and astrocytes, the permeability rate and apparent permeability coefficient of GA were found to be 13.3 ± 0.5 % and 16.5 ± 0.7 × 10−6 cm/s. These in vivo and in vitro results suggest that GL in orally administered yokukansan is absorbed into the blood as GA, and then reaches the brain through the BBB. This evidence further supports the possibility that GA is an active component in the psychotropic effect of yokukansan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  PubMed  CAS  Google Scholar 

  • Akao T, Hayashi T, Kobashi K, Kanaoka M, Kato H, Kobayashi M, Takeda S, Oyama T (1994) Intestinal bacterial hydrolysis is indispensable to absorption of 18β-glycyrrhetic acid after oral administration of glycyrrhizin in rats. J Pharm Pharmacol 46:135–137

    Article  PubMed  CAS  Google Scholar 

  • Cantelli-Forti G, Maffei F, Hrelia P, Bugamelli F, Bernardi M, D’Intino P, Maranesi M, Raggi MA (1994) Interaction of licorice on glycyrrhizin pharmacokinetics. Environ Health Perspect 102:65–68

    Article  PubMed  CAS  Google Scholar 

  • Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L (2007) Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 6:650–661

    Article  PubMed  CAS  Google Scholar 

  • De Vries HE, Blom-Roosemalen MCM, De Boer AG, Van Berkel TJC, Breimer DD, Kuiper J (1996) Effect of endotoxin on permeability of bovine cerebral endothelial cell layers in vitro. J Pharm Exp Ther 277:1418–1423

    Google Scholar 

  • Deli MA, Ábrahám CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    Article  PubMed  Google Scholar 

  • Gaillard PJ, De Boer AG (2000) Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci 12:95–102

    Article  PubMed  CAS  Google Scholar 

  • Gaillard PJ, De Boer AG, Breimer DD (2003) Pharmacological investigations on lipopolysaccharide-induced permeability changes in the blood–brain barrier in vitro. Microvasc Res 65:24–31

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Sakamoto T, Yamagishi T, Sakamoto K, Konishi K, Kobashi K, Namba T (1985) Metabolism of glycyrrhizin by human intestinal flora. II. Isolation and characterization of human intestinal bacteria capable of metabolizing glycyrrhizin and related compounds. Chem Pharm Bull 33:210–217

    Article  PubMed  CAS  Google Scholar 

  • Ikarashi Y, Iizuka S, Imamura S, Yamaguchi T, Sekiguchi K, Kanno H, Kawakami Z, Yuzurihara M, Kase Y, Takeda S (2009) Effects of Yokukansan, a traditional Japanese medicine, on memory disturbance and behavioral and psychological symptoms of dementia in thiamine-deficient rats. Biol Pharm Bull 32:1701–1709

    Article  PubMed  CAS  Google Scholar 

  • Imamura S, Tabuchi M, Kushida H, Nishi A, Kanno H, Yamaguchi T, Sekiguchi K, Ikarashi Y, Kase Y (2011) The blood–brain barrier permeability of geissoschizine methyl ether in Uncaria hook, a galenical constituent of the traditional Japanese medicine yokukansan. Cell Mol Neurobiol 31:787–793

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki K, Satoh-Nakagawa T, Maruyama M, Monma Y, Nemoto M, Tomita N, Tanji H, Fujiwara H, Seki T, Fujii M, Arai H, Sasaki H (2005) A randomized, observer-blind, controlled trial of the traditional Chinese medicine Yi-Gan San for improvement of behavioral and psychological symptoms and activities of daily living in dementia patients. J Clin Psychiatry 66:248–252

    Article  PubMed  Google Scholar 

  • Jang EY, Choe ES, Hwang M, Kim SC, Lee JR, Kim SG, Jeon JP, Buono RJ, Yang CH (2008) Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABAB receptor. Eur J Pharmacol 587:124–128

    Article  PubMed  CAS  Google Scholar 

  • Joό F (1996) Endothelial cells of the brain and other organ systems: some similarities and differences. Prog Neurobiol 48:255–273

    Article  Google Scholar 

  • Kawakami Z, Kanno H, Ueki T, Terawaki K, Tabuchi M, Ikarashi Y, Kase Y (2009) Neuroprotective effects of yokukansan, a traditional Japanese medicine, on glutamate-mediated excitotoxicity in cultured cells. Neuroscience 159:1397–1407

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Z, Ikarashi Y, Kase Y (2010) Glycyrrhizin and its metabolite 18β-glycyrrhetinic acid in glycyrrhiza, a constituent herb of yokukansan, ameliorate thiamine deficiency-induced dysfunction of glutamate transport in cultured rat cortical astrocytes. Eur J Pharmacol 626:154–158

    Article  PubMed  CAS  Google Scholar 

  • Kis B, Deli MA, Kobayashi H, Ábrahám CS, Yanagita T, Kaiya H, Isse T, Nishi R, Gotoh S, Kangawa K, Wada A, Greenwood J, Niwa M, Yamashita H, Ueta Y (2001) Adrenomedullin regulates blood–brain barrier functions in vitro. Neuroreport 12:4139–4142

    Article  PubMed  CAS  Google Scholar 

  • Mizukami K, Asada T, Kinoshita T, Tanaka K, Sonohara K, Nakai R, Yamaguchi K, Hanyu H, Kanaya K, Takao T, Okada M, Kudo S, Kotoku H, Iwakiri M, Kurita H, Miyamura T, Kawasaki Y, Omori K, Shiozaki K, Odawara T, Suzuki T, Yamada S, Nakamura Y, Toba K (2009) A randomized cross-over study of a traditional Japanese medicine (kampo), yokukansan, in the treatment of the behavioural and psychological symptoms of dementia. Int J Neuropsychopharmacol 12:191–199

    Article  PubMed  CAS  Google Scholar 

  • Monji A, Takita M, Samejima T, Takaishi T, Hashimoto K, Matsunaga H, Oda M, Sumida Y, Mizoguchi Y, Kato T (2009) Effect of yokukansan on the behavioral and psychological symptoms of dementia in elderly patients with Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 33:308–311

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27:687–694

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel Á, Tanaka K, Niwa M (2009) A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    Article  PubMed  CAS  Google Scholar 

  • Redzic Z (2011) Molecular biology of the blood–brain and the blood–cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8:3

    Article  PubMed  Google Scholar 

  • Takeda S, Ishihara K, Wakui Y, Amagaya S, Maruno M, Akao T, Kobashi K (1996) Bioavailability study of glycyrrhetic acid after oral administration of glycyrrhizin in rats; relevance to the intestinal bacterial hydrolysis. J Pharm Pharmacol 48:902–905

    Article  PubMed  CAS  Google Scholar 

  • Veszelka S, Pásztói M, Farkas AE, Krizbai I, Dung NTK, Niwa M, Ábrahám CS, Deli MA (2007) Pentosan polysulfate protects brain endothelial cells against bacterial lipopolysaccharide-induced damages. Neurochem Int 50:219–228

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Kurosaki Y, Nakayama T, Kimura T (1994) Mechanism of gastrointestinal absorption of glycyrrhizin in rats. Biol Pharm Bull 17:1399–1403

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Tabuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabuchi, M., Imamura, S., Kawakami, Z. et al. The Blood–Brain Barrier Permeability of 18β-Glycyrrhetinic Acid, a Major Metabolite of Glycyrrhizin in Glycyrrhiza Root, a Constituent of the Traditional Japanese Medicine Yokukansan . Cell Mol Neurobiol 32, 1139–1146 (2012). https://doi.org/10.1007/s10571-012-9839-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9839-x

Keywords

Navigation