Skip to main content

Advertisement

Log in

In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Angiogenesis of tissue-engineered bone remains a limited factor for the engineering of larger bone tissue constructs. Attempts to stimulate angiogenesis, using recombinant protein or gene transfer of angiogenic growth factors, have been proposed; however, these approaches have been associated with some problems regarding such as complex technique, expensive prices as well as safety problems and short half-life of angiogenic growth factors. This study was performed to determine the ability of strontium-doped calcium polyphosphate (SCPP) to induce angiogenesis via researching its effect on the mRNA expressions and protein secretion of VEGF and bFGF in/from cultured osteoblasts (ROS17/2.8 cells). We cultured osteoblasts with SCPP scaffolds containing various doses of strontium as well as calcium polyphosphate (CPP) scaffold. Through the detection of MTT and SEM, we have found that SCPP could promote cell proliferation and maintain their morphology. The results of RT–PCR and ELISA indicated that, compared with those in CPP group, the mRNA expression as well as protein levels of VEGF and bFGF in/from cultured osteoblasts were dose-dependent increasing in response to increasing strontium before reaching the peak in SCPP groups, and 8% SCPP showed the optimal promoting role. Therefore, SCPP containing proper dose of strontium could be served as a potential biomaterial with stimulating angiogenesis in bone tissue engineering and bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008;15:100–14.

    CAS  Google Scholar 

  2. Davies N, Dobner S, Bezuidenhout D, Schmidt C, Beck M, Zisch AH, Zilla P. The dosage dependance of VEGF stimulation on scaffold neovascularisation. Biomaterials. 2008;29:3531–8.

    Article  CAS  Google Scholar 

  3. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86:1541–58.

    Google Scholar 

  4. Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel AJ, Deng M, Lv Q, Nair LS, Doty SB, Laurencin CT. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proc Natl Acad Sci USA. 2008;105:11099–104.

    Article  CAS  Google Scholar 

  5. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci. 1997;22:251–6.

    Article  CAS  Google Scholar 

  6. Tong JP, Yao YF. Contribution of VEGF and PEDF to choroidal angiogenesis: a need for balanced expressions. Clin Biochem. 2006;39:267–76.

    Article  CAS  Google Scholar 

  7. Phillips HS, Hains J, Leung DW, Ferrara N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology. 1990;127:965–7.

    Article  CAS  Google Scholar 

  8. Koos RD. Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture. Biol Reprod. 1995;52:1426–35.

    Article  CAS  Google Scholar 

  9. Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med. 1999;77:527–43.

    Article  CAS  Google Scholar 

  10. Canalis E, Centrella M, McCarthy T. Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest. 1988;81:1572–7.

    Article  CAS  Google Scholar 

  11. Hurley MM, Abreu C, Harrison JR, Lichtler AC, Raisz LG, Kream BE. Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. J Biol Chem. 1993;268:5588–93.

    CAS  Google Scholar 

  12. Seghezzi G, Patel S, Ren CJ. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Bio1. 1998;141:1659–73.

    Article  CAS  Google Scholar 

  13. Tokuda H, Hirade K, Wang X. Involvement of SAPK/JNK in basic fibroblast growth factor-induced vascular endothelial growth factor release in osteoblasts. J Endocrino1. 2003;177:101–7.

    Article  CAS  Google Scholar 

  14. Fuchsa S, Mottab A, Migliaresi C. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials. 2006;27:5399–408.

    Article  Google Scholar 

  15. Richardson TO, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol. 2001;19:1029–34.

    Article  CAS  Google Scholar 

  16. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mat Res. 2003;65A:485–97.

    Google Scholar 

  17. Nomi M, Atala A, Coppi PD, Soker S. Principals of neovascularization for tissue engineering. Mol Aspects Med. 2002;23:463–83.

    CAS  Google Scholar 

  18. Jang JH, Rives CB, Shea LD. Plasmid delivery in vivo from porous tissue-engineering scaffolds: transgene expression and cellular transfection. Mol Ther. 2005;12:475–83.

    Article  CAS  Google Scholar 

  19. Huang YC, Kaigler D, Rice KG, Krebsbach PH, Mooney DJ. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res. 2005;20:848–57.

    Article  CAS  Google Scholar 

  20. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A. 2003;65:489–97.

    Article  Google Scholar 

  21. Marie PJ. Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int. 2005;16:S7–10.

    Article  CAS  Google Scholar 

  22. Ammann P. Strontium ranelate: a novel mode of action leading to renewed bone quality. Osteoporos Int. 2005;16:S11–5.

    Article  CAS  Google Scholar 

  23. Nielsen SP. The biological role of strontium. Bone. 2004;35:583–8.

    Article  Google Scholar 

  24. Canalis E, et al. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 1996;18:517–23.

    Article  CAS  Google Scholar 

  25. Qiu K, Zhao XJ, Wan CX. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials. 2006;27:1277–86.

    Article  CAS  Google Scholar 

  26. Tian M, Chen F, Song W. In vivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications. J Mater Sci Mater Med. 2009;20:1505–12.

    Article  CAS  Google Scholar 

  27. Chen YW, Feng T, Shi GQ. Interaction of endothelial cells with biodegradable strontium-doped calcium polyphosphate for bone tissue engineering. Appl Surf Sci. 2008;255:331–5.

    Article  CAS  Google Scholar 

  28. Chen YW, Shi GQ, Ding YL. In vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesis-related behaviors of HUVECs. J Mater Sci Mater Med. 2008;19:2655–62.

    Article  CAS  Google Scholar 

  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  Google Scholar 

  30. Brown EM. Is the calcium receptor a molecular target for the actions of strontium on bone? Osteoporos Int. 2003;14:S25–34.

    CAS  Google Scholar 

  31. Coulonbe J, Faure H, Robin B, Ruat M. In vitro effects of strontium ranelate on the extraccllular calcium sensing receptor. Biochem Biophys Res Commun. 2004;323:1184–90.

    Article  Google Scholar 

  32. Verberckmoes SC, DeBroe ME, D’Haese PC. Dose-dependent effects of strontium on osteoblast function and mineralisation. Kidney Int. 2003;64:534–43.

    Article  CAS  Google Scholar 

  33. Maehata Y, Takamizawa S, Ozawa S. Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor. Matrix Biol. 2006;25:47–58.

    Article  CAS  Google Scholar 

  34. Zhu Y, Gao C, Guan J, Shen J. Promoting the cytocompatibility of polyurethane scaffolds via surface photo-grafting polymerization of acrylamide. J Mater Sci Mater Med. 2004;15:283–9.

    Article  CAS  Google Scholar 

  35. Ronald EU, Sartoris A, Peters K. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials. 2007;28:3965–76.

    Article  Google Scholar 

  36. Choudhary S, Wadhwa S, Raisz LG, Alander C, Pilbeam CC. Extracellular calcium is a potent inducer of cyclo-oxygenase-2 in murine osteoblasts through an ERK signaling pathway. J Bone Miner Res. 2003;18:1813–24.

    Article  CAS  Google Scholar 

  37. Street J, Bao M. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 2002;999:656–61.

    Google Scholar 

  38. Young MF, Kerr JM, Ibaraki K. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop. 1992;281:275–94.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30870616), Basic Research Program of Sichuan Province-China (07JY029-075) and Natural Science Foundation of Jiangsu Province-China (BK2008152). We would like to thank the Analysis and Testing Center, Sichuan University (China) for their assistance of the completion of scanning electron microscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xixun Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Zhang, X., Yu, X. et al. In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering. J Mater Sci: Mater Med 22, 683–692 (2011). https://doi.org/10.1007/s10856-011-4247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4247-1

Keywords

Navigation