Skip to main content
Log in

Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Previously, our molecular binding study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified eagle medium

IP:

Immunoprecipitation

ROS:

Reactive oxygen species

RPE:

Retinal pigment epithelium

siRNA:

Small interfering RNA

References

  1. Chung H, Lee H, Lamoke F, Hrushesky WJM, Wood PA, Jahng WJ (2009) Neuroprotective role of erythropoietin by antiapoptosis in the retina. J Neurosci Res 87:2365–2374

    Article  CAS  Google Scholar 

  2. Lee H, Chung H, Arnouk H, Lamoke F, Hunt RC, Hrushesky WJM, Wood PA, Lee SH, Jahng WJ (2010) Cleavage of the retinal pigment epithelium-specific protein RPE65 under oxidative stress. Int J Biol Macromol 47:104–108

    Article  CAS  Google Scholar 

  3. Lee H, Arnouk H, Sripathi S, Chen P, Zhang R, Bartoli M, Hunt RC, Hrushesky WJM, Chung H, Lee SH, Jahng WJ (2010) Prohibitin as an oxidative stress biomarker in the eye. Int J Biol Macromol 47:685–690

    Article  CAS  Google Scholar 

  4. Lee H, Chung H, Lee SH, Jahng WJ (2010) Light-induced phosphorylation of crystallins in the retinal pigment epithelium. Int J Biol Macromol 48:194–201

    Article  Google Scholar 

  5. Arnouk H, Lee H, Zhang R, Chung H, Hunt RC, Jahng WJ (2011) Early biosignature of oxidative stress in the retinal pigment epithelium. J Proteomcs 74:254–261

    Article  CAS  Google Scholar 

  6. Zhang R, Hrushesky WJM, Wood PA, Lee SH, Hunt RC, Jahng WJ (2010) Melatonin reprogrammes proteomic profile in light-exposed retina in vivo. Int J Biol Macromol 47:255–260

    Article  CAS  Google Scholar 

  7. Sripathi SR, He W, Atkinson CL, Smith JJ, Liu Z, Elledge BM, Jahng WJ (2011) Mitochondrial-nuclear communication by prohibitin shuttling under oxidative stress. Biochemistry 50:8342–8351

    Article  CAS  Google Scholar 

  8. Sripathi SR, He W, Um J, Moser T, Dehnbostel S, Kindt K, Goldman J, Frost M, Jahng WJ (2012) Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress. Adv Biosci Biotech 3:1167–1178

    Article  CAS  Google Scholar 

  9. Jahng WJ (2012) New biomarkers in the retina and RPE under oxidative stress. In: Adedayo A (ed) Ocular diseases. ISBN: 978-953-51-0761-3. doi:10.5772/48785. InTech, 121–156

  10. McClung JK, Jupe ER, Liu XT, Dell’Orco RT (1995) Prohibitin: potential role in senescence, development, and tumor suppression. Exp Gerontol 30:99–124

    Article  CAS  Google Scholar 

  11. Nuell MJ, Stewart DA, Walker L, Friedman V, Wood CM, Owens GA, Smith JR, Schneider EL, Dell’ Orco R, Lumpkin CK (1991) Prohibitin, an evolutionarily conserved intracellular protein that blocks DNA synthesis in normal fibroblasts and HeLa cells. Mol Cell Biol 11:1372–1381

    Article  CAS  Google Scholar 

  12. He F, Zeng Y, Wu X, Ji Y, He X, Andrus T, Zhu T, Wang T (2009) Endogenous HIV-1 Vpr-mediated apoptosis and proteome alteration of human T-cell leukemia virus-1 transformed C8166 cells. Apoptosis 14:1212–1226

    Article  CAS  Google Scholar 

  13. Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 278:47853–47861

    Article  CAS  Google Scholar 

  14. Wang S, Fusaro G, Padmanabhan J, Chellappan SP (2002) Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression. Oncogene 21:8388–8396

    Article  CAS  Google Scholar 

  15. Theiss AL, Idell RD, Srinivasan S, Klapproth JM, Jones DP, Merlin D, Sitaraman SV (2007) Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB 21:197–206

    Article  CAS  Google Scholar 

  16. Sharma A, Qadri A (2004) Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci USA 101:17492–17497

    Article  CAS  Google Scholar 

  17. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10:625–632

    Article  CAS  Google Scholar 

  18. Nijtmans LG, De Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW, Muijsers AO, Van der Spek H, Grivell LA (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19:2444–2451

    Article  CAS  Google Scholar 

  19. Artal-Sanz M, Tsang WY, Willems EM, Grivell LA, Lemire BD, Van der Spek H, Nijtmans LGJ, Sanz MA (2003) The mitochondrial prohibitin complex is essential for embryonic viability and germline function in Caenorhabditis elegans. J Biol Chem 278:32091–32099

    Article  Google Scholar 

  20. Steglich G, Neupert W, Langer T (1999) Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol Cell Biol 19:3435–3442

    Article  CAS  Google Scholar 

  21. Ande SR, Mishra S (2009) Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling. Biochem Biophys Res Commun 390:1023–1028

    Article  CAS  Google Scholar 

  22. Bourges I, Ramus C, Mousson de Camaret B, Beugnot R, Remacle C, Cardol P, Hofhaus G, Issartel JP (2004) Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin. Biochem J 383:491–499

    Article  CAS  Google Scholar 

  23. Back JW, Sanz MA, De Jong L, De Koning LJ, Nijtmans LGJ, De Koster CG, Grivell LA, Van Der Spek H, Muijsers AO (2002) A structure for the yeast prohibitin complex: structure prediction and evidence from chemical crosslinking and mass spectrometry. Protein Sci 11:2471–2478

    Article  CAS  Google Scholar 

  24. Nijtmans LGJ, Sanz MA, Grivell LA, Coates PJ (2002) The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly. Cell Mol Life Sci 59:143–155

    Article  CAS  Google Scholar 

  25. Rivera-Milla E, Stuermer CAO, Málaga-Trillo E (2006) Ancient origin of reggie (flotillin), reggie-like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell Mol Life Sci 63:343–357

    Article  CAS  Google Scholar 

  26. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687

    Article  CAS  Google Scholar 

  27. Suter M, Remé C, Grimm C, Wenzel A, Jäättela M, Esser P, Kociok N, Leist M, Richter C (2000) Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275:39625–39630

    Article  CAS  Google Scholar 

  28. Kutsyi MP, Gouliaeva NA, Kuznetsova EA, Gaziev AI (2005) DNA-binding proteins of mammalian mitochondria. Mitochondrion 5:35–44

    Article  CAS  Google Scholar 

  29. Zamora DO, Riviere M, Choi D, Pan Y, Planck SR, Rosenbaum JT, David LL, Smith JR (2007) Proteomic profiling of human retinal and choroidal endothelial cells reveals molecular heterogeneity related to tissue of origin. Mol Vis 13:2058–2065

    CAS  Google Scholar 

  30. Bonilha VL, Bhattacharya SK, West KA, Sun J, Crabb JW, Rayborn ME, Hollyfield JG (2004) Proteomic characterization of isolated retinal pigment epithelium microvilli. Mol Cell Proteomics 3:1119–1127

    Article  CAS  Google Scholar 

  31. Ng KP, Gugiu B, Renganathan K, Davies MW, Gu X, Crabb JS, Kim SR, Rózanowska MB, Bonilha VL, Rayborn ME, Salomon RG, Sparrow JR, Boulton ME, Hollyfield JG, Crabb JW (2008) Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 7:1397–1405

    Article  CAS  Google Scholar 

  32. Alge CS, Suppmann S, Priglinger SG, Neubauer AS, May CA, Hauck S, Welge-Lussen U, Ueffing M, Kampik A (2003) Comparative Proteome Analysis of Native Differentiated and Cultured Dedifferentiated Human RPE Cells. Invest Ophthalmol Visual Sci 44:3629–3641

    Article  Google Scholar 

  33. Alge CS, Hauck SM, Priglinger SG, Kampik A, Ueffing M (2006) Differential protein profiling of primary versus immortalized human RPE cells identifies expression patterns associated with cytoskeletal remodeling and cell survival. J Proteome Res 5:862–878

    Article  CAS  Google Scholar 

  34. Nordgaard CL, Berg KM, Kapphahn RJ, Reilly C, Feng X, Olsen TW, Ferrington DA (2006) Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Visual Sci 47:815–822

    Article  Google Scholar 

  35. Nordgaard CL, Karunadharma PP, Feng X, Olsen TW, Ferrington DA (2008) Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Visual Sci 49:2848–2855

    Article  Google Scholar 

  36. Cottingham K (2006) Age-related macular degeneration and the RPE secretome. J Proteome Res 5:2501

    Article  CAS  Google Scholar 

  37. Decanini A, Karunadharma PR, Nordgaard CL, Feng X, Olsen TW, Ferrington DA (2008) Human retinal pigment epithelium proteome changes in early diabetes. Diabetologia 51:1051–1061

    Article  CAS  Google Scholar 

  38. Tezel G, Yang X, Cai J (2005) Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest Ophthalmol Visual Sci 46:3177–3187

    Article  Google Scholar 

  39. Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C, Rapp U, Rudel T (2005) Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nature Cell Biol 7:837–843

    Article  CAS  Google Scholar 

  40. Artal-Sanz M, Tavernarakis N (2009) Prohibitin couples diapause signaling to mitochondrial metabolism during ageing in C. elegans. Nature 461:793–797

    Article  CAS  Google Scholar 

  41. Gregory-Bass RC, Olatinwo M, Xu W, Matthews R, Stiles JK, Thomas K, Liu D, Tsang B, Thompson WE (2008) Prohibitin silencing reverses stabilization of mitochondrial integrity and chemoresistance in ovarian cancer cells by increasing their sensitivity to apoptosis. Int J Cancer 122:1923–1930

    Article  CAS  Google Scholar 

  42. Liu D, Lin Y, Kang T, Huang B, Xu W, Garcia-Barrio M, Olatinwo M, Matthews R, Chen YE, Thompson WE (2012) Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells. PLoS ONE 7:e34315

    Article  CAS  Google Scholar 

  43. Kasashima K, Sumitani M, Satoh M, Endo H (2008) Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp Cell Res 314:988–996

    Article  CAS  Google Scholar 

  44. He J, Cooper HM, Reyes A, Di Re M, Sembongi H, Litwin TR, Gao J, Neuman KC, Fearnley IM, Spinazzola A, Walker JE, Holt IJ (2012) Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis. Nucleic Acids Res 40:6109–6121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Jeremy Goldman and Mike Gibson for insightful discussions and sharing equipment. Matthew Durocher and Dr. Tristan Purvis are acknowledged for their suggestions and critical reading. This study was supported by the Century II Equipment fund and the Research Excellence Fund from Michigan Technological University, Research Assistantship and Teaching Assistantship from American University of Nigeria.

Authors’ Contributions

SRS and WJJ designed the hypothesis, aim, and experiments. SRS, ODS, FL, WH, TM, JYU conducted the experiments. WR, PSB, MB, WJJ provided materials, equipment, and participated in discussion. All authors wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Jin Jahng.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10930_2015_9641_MOESM1_ESM.pdf

Supplementary material 1 Supplement Figure S1. A. Immunoprecipitation of PHB interacting proteins. Coomassie blue stained gel shows immunoprecipitated proteins from control ARPE-19 cells (lysate) by anti-PHB antibody binding. Cells were harvested, lysed and proteins were analyzed by immunoprecipitation and SDS-PAGE. Proteins in W1 to W3 represents wash fractions; E1 to E3 represents elution fractions; Eb represents the protein elution by immunoprecipitated boiling protein-A beads with SDS-sample buffer. Elution fractions showed the potential binding partners of prohibitin and were analyzed further using mass spectrometry. Coomassie blue stained gel shows immunoprecipitated proteins from oxidative stress (200 μM H2O2 or tBUO2H) treated ARPE-19 cells (lysate) with anti-prohibitin antibody. W1 to W3 represents wash fractions; E1 to E3 represents elution fractions; Eb represents the protein elution by immunoprecipitated boiling protein-A beads with sample buffer (Eb). Protein standard marker represents the size between 10 to 120 kDa. Elution fractions showed the potential binding partners of prohibitin and were further processed for protein identification. B. Prohibitin interacting proteins in the retina. Coomassie blue stained gel shows immunoprecipitated proteins from control human retinal progenitor (HRP) cells using anti-prohibitin antibody. Cells were harvested and lysed, followed by protein analysis using SDS-PAGE and mass spectrometry. Proteins in W1-W3 lanes represents washing fractions; E1 to E3 represents elution fractions; Eb represents the protein elution by protein-A beads boiling with sample buffer. Elution fractions showed the potential binding partners of prohibitin and were further analyzed using mass spectrometry. (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sripathi, S.R., Sylvester, O., He, W. et al. Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium. Protein J 35, 1–16 (2016). https://doi.org/10.1007/s10930-015-9641-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-015-9641-y

Keywords

Navigation